版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Areviewandanalysisofcurrentcomputer-aidedfixturedesignapproachesIainBoyle,YimingRong,DavidC.BrownKeywords:Computer-aidedfixturedesignFixturedesignFixtureplanningFixtureverificationSetupplanningUnitdesignABSTRACTAkeycharacteristicofthemodernmarketplaceistheconsumerdemandforvariety.Torespondeffectivelytothisdemand,manufacturersneedtoensurethattheirmanufacturingpracticesaresufficientlyflexibletoallowthemtoachieverapidproductdevelopment.Fixturing,whichinvolvesusingfixturestosecureworkpiecesduringmachiningsothattheycanbetransformedintopartsthatmeetrequireddesignspecifications,isasignificantcontributingfactortowardsachievingmanufacturingflexibility.Toenableflexiblefixturing,considerablelevelsofresearchefforthavebeendevotedtosupportingtheprocessoffixturedesignthroughthedevelopmentofcomputer-aidedfixturedesign(CAFD)toolsandapproaches.Thispapercontainsareviewoftheseresearchefforts.Overseventy-fiveCAFDtoolsandapproachesarereviewedintermsofthefixturedesignphasestheysupportandtheunderlyingtechnologyuponwhichtheyarebased.Theprimaryconclusionofthereviewisthatwhilesignificantadvanceshavebeenmadeinsupportingfixturedesign,thereareprimarilytworesearchissuesthatrequirefurthereffort.ThefirstoftheseisthatcurrentCAFDresearchissegmentedinnatureandthereremainsaneedtoprovidemorecohesivefixturedesignsupport.Secondly,agreaterfocusisrequiredonsupportingthedetaileddesignofafixture’sphysicalstructure.2010ElsevierLtd.Allrightsreserved.Contents1.Introduction………………………22.Fixturedesign…………………….23.CurrentCAFDapproaches……………………….43.1Setupplanning…………….43.1.1Approachestosetupplanning……………………...3.2Fixtureplanning…………..43.2.1Approachestodefiningthefixturingrequirement……………3.2.2Approachestonon-optimizedlayoutplanning…….3.2.3Approachestolayoutplanningoptimization………3.3Unitdesign………………...73.3.1Approachestoconceptualunitdesign……………3.3.2Approachestodetailedunitdesign………………...3.4Verification………………..83.4.1Approachestoconstrainingrequirementsverification…………….83.4.2Approachestotolerancerequirementsverification………………..3.4.3Approachestocollisiondetectionrequirementsverification………3.4.4Approachestousabilityandaffordabilityrequirementsverification………………3.5Representationoffixturinginformation…………………..94.AnanalysisofCAFDresearch…………………...94.1ThesegmentednatureofCAFDresearch………………...94.2Effectivelysupportingunitdesign………104.3Comprehensivelyformulatingthefixturingrequirement………………..104.4ValidatingCAFDresearchoutputs……………………....105.Conclusion…………………...…10References…………………………101.IntroductionAkeyconcernformanufacturingcompaniesisdevelopingtheabilitytodesignandproduceavarietyofhighqualityproductswithinshorttimeframes.Quickreleaseofanewproductintothemarketplace,aheadofanycompetitors,isacrucialfactorinbeingabletosecureahigherpercentageofthemarketplaceandincreasedprofitmargin.Asaresultoftheconsumerdesireforvariety,batchproductionofproductsisnowmorethenormthanmassproduction,whichhasresultedintheneedformanufacturerstodevelopflexiblemanufacturingpracticestoachievearapidturnaroundinproductdevelopment.Anumberoffactorscontributetoanorganization’sabilitytoachieveflexiblemanufacturing,oneofwhichistheuseoffixturesduringproductioninwhichworkpiecesgothroughanumberofmachiningoperationstoproduceindividualpartswhicharesubsequentlyassembledintoproducts.Fixturesareusedtorapidly,accurately,andsecurelypositionworkpiecesduringmachiningsuchthatallmachinedpartsfallwithinthedesignspecificationsforthatpart.Thisaccuracyfacilitatestheinterchangeabilityofpartsthatisprevalentinmuchofmodernmanufacturingwheremanydifferentproductsfeaturecommonparts.Thecostsassociatedwithfixturingcanaccountfor10–20%ofthetotalcostofamanufacturingsystem[1].Thesecostsrelatenotonlytofixturemanufacture,assembly,andoperation,butalsototheirdesign.Hencetherearesignificantbenefitstobereapedbyreducingthedesigncostsassociatedwithfixturingandtwoapproacheshavebeenadoptedinpursuitofthisaim.Onehasconcentratedondevelopingflexiblefixturingsystems,suchastheuseofphase-changingmaterialstoholdworkpiecesinplace[2]andthedevelopmentofcommercialmodularfixturesystems.However,thesignificantlimitationoftheflexiblefixturingmantraisthatitdoesnotaddressthedifficultyofdesigningfixtures.Tocombatthisproblem,asecondresearchapproachhasbeentodevelopcomputer-aidedfixturedesign(CAFD)systemsthatsupportandsimplifythefixturedesignprocessanditisthisresearchthatisreviewedwithinthispaper.Section2describestheprincipalphasesofandthewidevarietyofrequirementsdrivingthefixturedesignprocess.SubsequentlyinSection3anoverviewofresearcheffortsthathavefocuseduponthedevelopmentoftechniquesandtoolsforsupportingtheseindividualphasesofthedesignprocessisprovided.Section4critiquestheseeffortstoidentifycurrentgapsinCAFDresearch,andfinallythepaperconcludesbyofferingsomepotentialdirectionsforfutureCAFDresearch.Beforeproceeding,itisworthnotingthattherehavebeenpreviousreviewsoffixturingresearch,mostrecentlyBiandZhang[1]andPehlivanandSummers[3].BiandZhang,whileprovidingsomedetailsonCAFDresearch,tendtofocusuponthedevelopmentofflexiblefixturingsystems,andPehlivanandSummersfocusuponinformationintegrationwithinfixturedesign.Thevalueofthispaperisthatitprovidesanin-depthreviewandcritiqueofcurrentCAFDtechniquesandtoolsandhowtheyprovidesupportacrosstheentirefixturedesignprocess.2.FixturedesignThissectionoutlinesthemainfeaturesoffixturesandmorepertinentlyofthefixturedesignprocessagainstwhichresearcheffortswillbereviewedandcritiquedinSections3and4,respectively.Physicallyafixtureconsistsofdevicesthatsupportandclampaworkpiece[4,5].Fig.1representsatypicalexampleofafixtureinwhichtheworkpiecerestsonlocatorsthataccuratelylocateit.Clampsholdtheworkpieceagainstthelocatorsduringmachiningthussecuringtheworkpiece’slocation.Thelocatingunitsthemselvesconsistofthelocatorsupportingunitandthelocatorthatcontactstheworkpiece.Theclampingunitsconsistofaclampsupportingunitandaclampthatcontactstheworkpieceandexertsaclampingforcetorestrainit.Typicallythedesignprocessbywhichsuchfixturesarecreatedhasfourphases:setupplanning,fixtureplanning,unitdesign,andverification,asillustratedinFig.2,whichisadaptedfromKangetal.[6].Duringsetupplanningworkpieceandmachininginformationisanalyzedtodeterminethenumberofsetupsrequiredtoperformallnecessarymachiningoperationsandtheappropriatelocatingdatumsforeachsetup.Asetuprepresentsthecombinationofprocessesthatcanbeperformedonaworkpiecewithouthavingtoalterthepositionororientationoftheworkpiecemanually.Togenerateafixtureforeachsetupthefixtureplanning,unitdesign,andverificationphasesareexecuted.Duringfixtureplanning,thefixturingrequirementsforasetuparegeneratedandthelayoutplan,whichrepresentsthefirststeptowardsasolutiontotheserequirementsisgenerated.Thislayoutplandetailstheworkpiecesurfaceswithwhichthefixture’slocatingandclampingunitswillestablishcontact,togetherwiththesurfacepositionsofthelocatingandclampingpoints.Thenumberandpositionoflocatingpointsmustbesuchthataworkpiece’ssixdegreesoffreedom(Fig.3)areadequatelyconstrainedduringmachining[7]andthereareavarietyofconceptuallocatingpointlayoutsthatcanfacilitatethis,suchasthe3-2-1locatingprinciple[4].Inthethirdphase,suitableunitdesigns(i.e.,thelocatingandclampingunits)aregeneratedandthefixtureissubsequentlytestedduringtheverificationphasetoensurethatitsatisfiesthefixturingrequirementsdrivingthedesignprocess.Itisworthnotingthatverificationofsetupsandfixtureplanscantakeplaceastheyaregeneratedandpriortounitdesign.Fixturingrequirements,whichalthoughnotshowninKangetal.[6]aretypicallygeneratedduringthefixtureplanningphase,canbegroupedintosixclasses(Table1).The‘‘physical’’requirementsclassisthemostbasicandrelatestoensuringthefixturecanphysicallysupporttheworkpiece.The‘‘tolerance’’requirementsrelatetoensuringthatthelocatingtolerancesaresufficienttolocatetheworkpieceaccuratelyandsimilarlythe‘‘constraining’’requirementsfocusonmaintainingthisaccuracyastheworkpieceandfixturearesubjectedtomachiningforces.The‘‘affordability’’requirementsrelatetoensuringthefixturerepresentsvalue,forexampleintermsofmaterial,operating,andassembly/disassemblycosts.The‘‘collisiondetection’’requirementsfocusuponensuringthatthefixturedoesnotcollidewiththemachiningpath,theworkpiece,orindeeditself.The‘‘usability’’requirementsrelatetofixtureergonomicsandincludeforexampleneedsrelatedtoensuringthatafixturefeatureserror-proofingtopreventincorrectinsertionofaworkpiece,andchipshedding,wherethefixtureassistsintheremovalofmachinedchipsfromtheworkpiece.Aswithmanydesignsituations,theconflictingnatureoftheserequirementsisproblematic.Forexampleaheavyfixturecanbeadvantageousintermsofstabilitybutcanadverselyaffectcost(duetoincreasedmaterialcosts)andusability(becausetheincreasedweightmayhindermanualhandling).SuchconflictsaddtothecomplexityoffixturedesignandcontributetotheneedfortheCAFDresearchreviewedinSection3.Table1Fixturingrequirements.GenericrequirementAbstractsub-requirementexamplesPhysical●Thefixturemustbephysicallycapableofaccommodatingtheworkpiecegeometryandweight.●Thefixturemustallowaccesstotheworkpiecefeaturestobemachined.Tolerance●Thefixturelocatingtolerancesshouldbesufficienttosatisfypartdesigntolerances.Constraining●Thefixtureshallensureworkpiecestability(i.e.,ensurethatworkpieceforceandmomentequilibriumaremaintained).●Thefixtureshallensurethatthefixture/workpiecestiffnessissufficienttopreventdeformationfromoccurringthatcouldresultindesigntolerancesnotbeingachieved.Affordability●Thefixturecostshallnotexceeddesiredlevels.●Thefixtureassembly/disassemblytimesshallnotexceeddesiredlevels.●Thefixtureoperationtimeshallnotexceeddesiredlevels.CollisionPrevention●Thefixtureshallnotcausetoolpath–fixturecollisionstooccur.●Thefixtureshallcauseworkpiece–fixturecollisionstooccur(otherthanatthedesignatedlocatingandclampingpositions).●Thefixtureshallnotcausefixture–fixturecollisionstooccur(otherthanatthedesignatedfixturecomponentconnectionpoints).Usability●Thefixtureweightshallnotexceeddesiredlevels.●Thefixtureshallnotcausesurfacedamageattheworkpiece/fixtureinterface.●Thefixtureshallprovidetoolguidancetodesignatedworkpiecefeatures.●Thefixtureshallensureerror-proofing(i.e.,thefixtureshouldpreventincorrectinsertionoftheworkpieceintothefixture).●Thefixtureshallfacilitatechipshedding(i.e.,thefixtureshouldprovideameansforallowingmachinedchipstoflowawayfromtheworkpieceandfixture).3.CurrentCAFDapproachesThissectiondescribescurrentCAFDresearchefforts,focusingonthemannerinwhichtheysupportthefourphasesoffixturedesign.Table2providesasummaryofresearcheffortsbaseduponthedesignphasestheysupport,thefixturerequirementstheyseektoaddress(boldtexthighlightsthattherequirementisaddressedtoasignificantdegreeofdepth,whilstnormaltextthatthedegreeofdepthislesserinnature),andtheunderlyingtechnologyuponwhichtheyareprimarilybased.Sections3.1–3.4describesdifferentapproachesforsupportingsetupplanning,fixtureplanning,unitdesign,andverification,respectively.Inaddition,Section3.5discussesCAFDresearcheffortswithregardtorepresentingfixturinginformation.3.1.SetupplanningSetupplanninginvolvestheidentificationofmachiningsetups,whereanindividualsetupdefinesthefeaturesthatcanbemachinedonaworkpiecewithouthavingtoalterthepositionororientationoftheworkpiecemanually.Thereafter,theremainingphasesofthedesignprocessfocusondevelopingindividualfixturesforeachsetupthatsecuretheworkpiece.Fromafixturingviewpoint,thekeyoutputsfromthesetupplanningstagearetheidentificationofeachrequiredsetupandthelocatingdatums(i.e.,theprimarysurfacesthatwillbeusedtolocatetheworkpieceinthefixture).Thekeytaskwithinsetupplanningisthegroupingorclusteringoffeaturesthatcanbemachinedwithinasinglesetup.Machiningfeaturescanbedefinedasthevolumesweptbyacuttingtool,andtypicalexamplesincludeholes,slots,surfaces,andpockets[8].Clusteringofthesefeaturesintoindividualsetupsisdependentuponanumberoffactors(includingthetolerancedependenciesbetweenfeatures,thecapabilityofthemachinetoolsthatwillbeusedtocreatethefeatures,thedirectionofthecuttingtoolapproach,andthefeaturemachiningprecedenceorder),andanumberoftechniqueshavebeendevelopedtosupportsetupplanning.Graphtheoryandheuristicreasoningarethemostcommontechniquesusedtosupportsetupplanning,althoughmatrixbasedtechniquesandneuralnetworkshavealsobeenemployed.3.1.1.ApproachestosetupplanningTheuseofgraphtheorytodetermineandrepresentsetupshasbeenaparticularlypopularapproach[9–11].Graphsconsistoftwosetsofelements:vertices,whichrepresentworkpiecefeatures,andedges,whichrepresenttherelationshipsthatexistbetweenfeaturesanddrivesetupidentification.Theirnaturecanvary,forexampleinSarmaandWright[9]considerationoffeaturemachiningprecedencerelationshipsisprominent,whereasHuangandZhang[10]focusuponthetolerancerelationshipsthatexistbetweenfeatures.Giventhattheseedgescanbeweightedinaccordancewiththetolerancemagnitudes,thisgraphapproachcanalsofacilitatetheidentificationofsetupsthatcanminimizetolerancestackuperrorsbetweensetupsthroughthegroupingoftighttolerances.However,thiscanproveproblematicgiventhedifficultyofcomparingthemagnitudeofdifferenttolerancetypestoeachotherthusHuang[12]includestheuseoftolerancefactors[13]asameansoffacilitatingsuchcomparisons,whicharerefinedandextendedbyHuangandLiu[14]tocaterforagreatervarietyoftolerancetypesandthecaseofmultipletolerancerequirementsbeingassociatedwiththesamesetoffeatures.Whilesomemethodsuseundirectedgraphstoassistsetupidentification[11],Yaoetal.[15],ZhangandLin[16],andZhangetal.[17]usedirectedgraphsthatfacilitatethedeterminationandexplicitrepresentationofwhichfeaturesshouldbeusedaslocatingdatums(Fig.4)inadditiontosetupidentificationandsequencing.Also,Yaoetal.refinetheidentifiedsetupsthroughconsiderationofavailablemachinetoolcapabilityinatwostagesetupplanningprocess.Experientialknowledge,intheformofheuristicreasoning,hasalsobeenusedtoassistsetupplanning.Itspopularitystemsfromthefactthatfixturedesigneffectivenesshasbeenconsideredtobedependentupontheexperienceofthefixturedesigner[18].Tosupportsetupplanning,suchknowledgehastypicallybeenheldintheformofempiricallyderivedheuristicrules,althoughobjectorientedapproacheshaveonoccasionbeenadopted[19].ForexampleGologlu[20]usesheuristicrulestogetherwithgeometricreasoningtosupportfeatureclustering,featuremachiningprecedence,andlocatingdatumselection.Withinsuchheuristicapproaches,thefocustendstofalluponrulesconcerningthephysicalnatureoffeaturesandmachiningprocessesusedtocreatethem[21,22].Althoughsometechniquesdoincludefeaturetoleranceconsiderations[23],theirdepthofanalysiscanbelessthanthatfoundwithinthegraphbasedtechniques[24].Similarly,kinematicapproaches[25]havebeenusedtofacilitateadeeperanalysisoftheimpactoftoolapproachdirectionsuponfeatureclusteringthanistypicallyachievedusingrule-basedapproaches.However,itisworthnotingthatgraphbasedapproachesareoftenaugmentedwithexperientialrule-basestoincreasetheiroveralleffectiveness[16].Matrixbasedapproacheshavealsobeenusedtosupportsetupplanning,inwhichamatrixdefiningfeatureclustersisgeneratedandsubsequentlyrefined.Ongetal.[26]determineafeatureprecedencematrixoutliningtheorderinwhichfeaturescanbemachined,whichisthenoptimizedagainstanumberofcostindicators(suchasmachinetoolcost,changeovertime,etc.)inahybridgeneticalgorithm-simulatedannealingapproachthroughconsiderationofdynamicallychangingmachinetoolcapabilities.HebbalandMehta[27]generateaninitialfeaturegroupingmatrixbaseduponthemachinetoolapproachdirectionforeachfeaturewhichissubsequentlyrefinedthroughtheapplicationofalgorithmsthatconsiderlocatingfacesandfeaturetolerances.Alternatively,theuseofneuralnetworkstosupportsetupplanninghasalsobeeninvestigated.Neuralnetworksareinterconnectednetworksofsimpleelements,wheretheinterconnectionsare‘‘learned’’fromasetofexampledata.Onceeducated,thesenetworkscangeneratesolutionsfornewproblemsfedintothenetwork.MingandMak[28]useaneuralnetworkapproachinwhichfeatureprecedence,toolapproachdirection,andtolerancerelationshipsarefedintoaKohonenself-organizingneuralnetworktogroupoperationsforindividualfeaturesintosetups.3.2.FixtureplanningFixtureplanninginvolvesthecomprehensivedefinitionofafixturingrequirementintermsofthephysical,tolerance,constraining,affordability,collisionprevention,andusabilityrequirementslistedinTable1,andthecreationofafixturelayoutplan.Thelayoutplanrepresentsthefirstpartofthefixturesolutiontotheserequirements,andspecifiesthepositionofthelocatingandclampingpointsontheworkpiece.Manylayoutplanningapproachesfeatureverification,particularlywithregardtotheconstrainingrequirements.Typicallythisverificationformspartofafeedbackloopthatseekstooptimizethelayoutplanwithrespecttotheserequirements.Techniquesusedtosupportfixtureplanningarenowdiscussedwithrespecttofixturerequirementdefinition,layoutplanning,andlayoutoptimization.Fig.4.Aworkpiece(a)anditsdirectedgraphsshowingthelocatingdatums(b)(adaptedfromZhangetal.[17]).3.2.1.ApproachestodefiningthefixturingrequirementComprehensivefixturerequirementdefinitionhasreceivedlimitedattention,primarilyfocusinguponthedefinitionofindividualrequirementswithinthephysical,tolerance,andconstrainingrequirements.Forexample,Zhangetal.[17]under-taketolerancerequirementdefinitionthroughananalysisofworkpiecefeaturetolerancestodeterminetheallowedtoleranceateachlocatingpointandthedecompositionofthattoleranceintoitssources.Theallowedlocatingpointaccuracyiscomposedofanumberoffactors,suchasthelocatingunittolerance,themachinetooltolerance,theworkpiecedeformationatthelocatingpoint,andsoon.Thesedecomposedtolerancerequirementscansubsequentlydrivefixturedesign:e.g.,thetoleranceofthelocatingunitdevelopedintheunitdesignphasecannotexceedthespecifiedlocatingunittolerance.Inasimilarindividualisticvein,definitionoftheclampingforcerequirementsthatclampingunitsmustachievehasalsoreceivedattention[29,30].Inamoreholisticapproach,Boyleetal.[31]facilitateacomprehensiverequirementspecificationthroughtheuseofskeletonrequirementsetsthatprovideaninitialdecompositionoftherequirementslistedinTable1,andwhicharesubsequentlyrefinedthroughaseriesofanalysesandinteractionwiththefixturedesigner.Hunteretal.[32,33]alsofocusonfunctionalrequirementdrivenfixturedesign,butrestricttheirfocusprimarilytothephysicalandconstrainingrequirements.3.2.2.Approachestonon-optimizedlayoutplanningLayoutplanningisconcernedwiththeidentificationofthelocatingprinciple,whichdefinesthenumberandgeneralarrangementoflocatingandclampingpoints,theworkpiecesurfacestheycontact,andthesurfacecoordinatepositionswherecontactoccurs.Fornon-optimizedlayoutplanning,approachesbaseduponthere-useofexperientialknowledgehavebeenused.Inadditiontorule-basedapproaches[20,34,35]thataresimilarinnaturetothosediscussedinSection3.1,case-basedreasoninghasalsobeenused.CBRisageneralproblemsolvingtechniquethatusesspecificknowledgeofpreviousproblemstosolvenewones.Inapplyingthisapproachtolayoutplanning,alayoutplanforaworkpieceisobtainedbyretrievingtheplanusedforasimilarworkpiecefromacaselibrarycontainingknowledgeofpreviousworkpiecesandtheirlayoutplans[18,36,37].Workpiecesimilarityistypicallycharacterizedthroughindexingworkpiecesaccordingtotheirpartfamilyclassification,tolerances,features,andsoon.LinandHuang[38]adoptasimilarworkpiececlassificationapproach,butretrievelayoutplansusinganeuralnetwork.Furtherworkhassoughttoverifylayoutplansandrepairthemifnecessary.ForexampleRoyandLiao[39]performaworkpiecedeformationanalysisandifdeformationistoogreatemployheuristicrulestorelocateandretestlocatingandclampingpositions.3.2.3.ApproachestolayoutplanningoptimizationLayoutplanoptimizationiscommonwithinCAFDandoccurswithrespecttoworkpiecestabilityanddeformation,whicharebothconstrainingrequirements.Stabilitybasedoptimizationtypicallyfocusesuponensuringalayoutplansatisfiesthekinematicformclosureconstraint(inwhichasetofcontactscompletelyconstraininfinitesimalpartmotion)andaugmentingthiswithoptimizationagainstsomeformofstabilitybasedrequirement,suchasminimizingforcesatthelocatingand/orclampingpoints[40–42].WuandChan[43]focusedonoptimizingstability(measuringstabilityisdiscussedinSection3.4)usingaGeneticAlgorithm(GA),whichisatechniquefrequentlyemployedindeformationbasedoptimization.GAs,whichareanexampleofevolutionaryalgorithms,areoftenusedtosolveoptimizationproblemsanddrawtheirinspirationfrombiologicalevolution.ApplyingGAsinsupportoffixtureplanning,potentiallayoutplansolutionsareencodedasbinarystrings,tested,evaluated,andsubjectedto‘‘biological’’modificationthroughreproduction,mutation,andcrossovertogenerateimprovedsolutionsuntilanoptimalstateisreached.Typicallydeformationtestingisemployedusingafiniteelementanalysisinwhichaworkpieceisdiscretizedtocreateaseriesofnodesthatrepresentpotentiallocatingandclampingcontactpoints,asperformedforexamplebyKashyapandDeVries[44].Setsofcontactpointsareencodedandtested,andtheGAusedtodevelopnewcontactpointsetsuntilanoptimumisreachedthatminimizesworkpiecedeformationcausedbymachiningandclampingforces[45,46].Ratherthanusenodes,someCAFDapproachesusegeometricdata(suchasspatialcoordinates)intheGA,whichcanofferimprovedaccuracyastheyaccountforthephysicaldistancethatexistsbetweennodes[47,48].Pseudogradienttechniques[49]havealsobeenemployedtoachieveoptimization[50,51].Vallapuzhaetal.[52]comparedtheeffectivenessofGAandpseudogradientoptimization,concludingthatGAsprovidedhigherqualityoptimizationsgiventheirabilitytosearchforglobalsolutions,whereaspseudogradienttechniquestendedtoconvergeonlocaloptimums.Ratherthanconcentratingonfixturedesignsforindividualparts,KongandCeglarek[53]defineamethodthatidentifiesthefixtureworkspaceforafamilyofpartsbasedontheindividualconfigurationofthefixturelocatinglayoutforeachpart.ThemethodusesProcrustesanalysistoidentifyapreliminaryworkspacelayoutthatissubjectedtopairwiseoptimizationoffixtureconfigurationsforagivenpartfamilytodeterminethebestsuperpositionoflocatingpointsforafamilyofpartsthatcanbeassembledonasinglereconfigurableassemblyfixture.ThisbuildsuponearlierworkbyLeeetal.[54]throughattemptingtosimplifythecomputationaldemandsoftheoptimizationalgorithm.3.3.UnitdesignUnitdesigninvolvesboththeconceptualanddetaileddefinitionofthelocatingandclampingunitsofafixture,togetherwiththebaseplatetowhichtheyareattached(Fig.5).Theseunitsconsistofalocatororclampthatcontactstheworkpieceandisitselfattachedtoastructuralsupport,whichinturnconnectswiththebaseplate.Thesestructuralsupportsservemultiplefunctions,forexampleprovidingthelocatingandclampingunitswithsufficientrigiditysuchthatthefixturecanwithstandappliedmachiningandclampingforcesandthusresultinthepartfeaturedesigntolerancesbeingobtained,andallowingtheclamporlocatortocontacttheworkpieceattheappropriateposition.Unitdesignhasingeneralreceivedlessattentionthanbothfixtureplanningandverification,butanumberoftechniqueshavebeenappliedtosupportbothconceptualanddetailedunitdesign.3.3.1.ApproachestoconceptualunitdesignConceptualunitdesignhasfocuseduponthedefinitionofthetypesandnumbersofelementsthatanindividualunitshouldco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026福建三明市尤溪县总医院医学人才校园(福建中医药大学)专场公开招聘7人的通告考试备考题库附答案
- 2026福建龙岩市第一医院医疗类引进生招聘16人参考题库附答案
- 2026西藏自治区定向选调生招录(70人)考试备考题库附答案
- 公共交通乘客信息管理制度
- 2026黑龙江哈尔滨启航劳务派遣有限公司派遣到哈工大计算学部社会计算与交互机器人研究中心招聘1人参考题库附答案
- 北京市公安局辅警岗位招聘300人备考题库附答案
- 景德镇市公安局2025年下半年招聘警务辅助人员体能测评考试备考题库附答案
- 特飞所2026届校园招聘考试备考题库附答案
- 邻水县2025年下半年公开考调公务员(21人)参考题库附答案
- 2026陕西省面向中国政法大学招录选调生考试备考题库附答案
- 2025核电行业市场深度调研及发展趋势与商业化前景分析报告
- 急惊风中医护理查房
- 营地合作分成协议书
- GB/T 70.2-2025紧固件内六角螺钉第2部分:降低承载能力内六角平圆头螺钉
- 基于视频图像的大型户外场景三维重建算法:挑战、创新与实践
- 物流管理毕业论文范文-物流管理毕业论文【可编辑全文】
- 2025年四川省高职单招模拟试题语数外全科及答案
- 2025年江苏事业单位教师招聘体育学科专业知识考试试卷含答案
- 网络销售人员培训
- 设备租赁绩效考核与激励方案设计实施方法规定
- 合肥市轨道交通集团有限公司招聘笔试题库及答案2025
评论
0/150
提交评论