版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第11章三角形八年级上册第1页学习目标12对三角形基本概念、基本知识进行梳理。对三角形一章所包括基本题型深入复习掌握。3提升学利用所学知识处理问题能力。第2页知识脉络与三角形相关线段三角形内角和三角形外角和三角形边高线中线角平分线与三角形相关角三角形定义、分类内角与外角关系三角形第3页定义多边形内外角和正多边形多边形镶嵌多边形知识脉络第4页ACB
2.点叫做三角形顶点1、三角形定义:AB、BC、CA
A、B、C3、∠A、∠B、∠C由不在同一直线上三条线段首尾顺次相接所组成图形叫做三角形.1.线段
叫做三角形边.叫做三角形内角,简称三角形角。第5页AC顶点是A、B、C三角形记作:cb读作:三角形ABC三角形边有时也用a、b、c来表示。三角形用“△”符号表示△ABCaB第6页2.三角形分类锐角三角形三角形钝角三角形(1)按角分直角三角形斜三角形(2)按边分腰和底不等等腰三角形三角形等腰三角形不等边三角形等边三角形第7页3.三角形三边关系:(1)三角形两边和大于第三边判断三条已知线段a、b、c能否组成三角形.当a最长,且有b+c>a时,就可组成三角形.确定三角形第三边取值范围:两边之差<第三边<两边之和.(2)三角形两边差小于第三边第8页(1)、三角形高线定义:顶点和垂足之间4、三角形主要线段从三角形一个顶点向它对边所在直线作垂线,_______________线段叫做三角形高线.(2)、三角形角平分线定义:顶点与交点三角形一个角平分线与它对边相交,这个角之间线段叫做三角形角平分线。(3)、三角形中线定义顶点与它对边中点连结三角形一个线段叫做三角形中线。第9页(4).三角形三条高线(或高线所在直线)交于一点(垂心)锐角三角形三条高线交于三角形内部一点,直角三角形三条高线交于直角顶点,钝角三角形三条高线所在直线交于三角形外部一点。(5)、三角形三条中线交于三角形内部一点(重心)。(6).三角形三条角平分线交于三角形内部一点。(内心)第10页5.三角形内角和定理(1)三角形内角和等于1800(2)直角三角形两个锐角互余。6.三角形外角和定理三角形外角和等于3600
三角形一个外角等于与它不相邻两个内角和。7.三角形外角与内角关系
三角形一个外角大于与它不相邻任何一个内角。第11页8、
三角形木架形状不会改变,而四边形木架形状会改变.这就是说,三角形含有稳定性,而四边形没有稳定性。第12页三角形
长方形
六边形
四边形
八边形在平面内,由一些不在同一条直线上线段首尾顺次相接组成图形叫做多边形。9、多边形定义第13页了解一下内角对角线对角线:连接多边形不相邻两个顶点线段。可表示为:五边形ABCDE或五边形AEDCBABCDE外角1第14页10、多边形分类请分别画出以下两个图形各边所在直线,你能得到什么结论?(1)(2)
如图(1)这么,画出多边形任何一条边所在直线,整个多边形都在这条直线同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。ABCDEFGH第15页观察下面每个多边形边、角有何特点?
在平面内,各个角都相等,各条边也都相等多边形叫做正多边形11、正多边形第16页12、多边形内角和与外角和及对角线n-3n-23×1800418003600360036003600(n-2)×1800四边形五边形六边形图形过一个顶点所作对角线条数多边形内角和多边形外角和过一个顶点作对角线分割三角形个数第17页形状大小相同任意三角形可镶嵌成一个平面形状大小相同任意四边形可镶嵌成一个平面1234123412341234镶嵌条件:拼接在同一个顶点处各个多边形内角之和等于360°13.镶嵌第18页正方形正三角形正六边形正三、四、六边形能够镶嵌第19页1.在△ABC中,(1)∠B=100°,∠A=∠C,则∠C=
;(2)2∠A=∠B+∠C,则∠A=
。2.如图,______是△ACD外角,∠ADB=115°,∠CAD=80°则∠C=___.
40°60°35°ABCD∠ADB经典例题第20页3、以下条件中能组成三角形是()
A、5cm,13cm,7cm
B、3cm,5cm,9cm
C、14cm,9cm,6cm
D、5cm,6cm,11cm
C4、三角形两边为7cm和5cm,则第三边x范围是_____________;2cm<x<12cm经典例题第21页
5.如右图,AD是BC边上高,BE是△ABD角平分线,∠1=40°,∠2=30°,则∠C=____∠BED=
。
65°60°6.直角三角形两个锐角相等,则每一个锐角等于_____度。ABCD12E45经典例题第22页7、在△ABC中,∠A是∠B2倍,∠C比∠A+∠B还大30°,则∠C外角为_____度,这个三角形是____三角形75°钝角8、如图,已知:AD是△ABC中线,△ABC面积为50cm2,则△ABD面积是_______.25cm2ABCD经典例题第23页解:由三角形两边之和大于第三边,两边之差小于第三边得:8-3<a<8+3,∴5<a<11又∵第三边长为奇数,∴第三条边长为7cm、9cm。9、已知两条线段长分别是3cm、8cm,要想拼成一个三角形,且第三条线段a长为奇数,问第三条线段应取多少长?经典例题第24页10、有一等腰三角形,一边长是5cm,另一边长是8cm,求它周长。解:(1)当腰长为5cm时,它周长为:5+5+8=18(cm)
(2)当腰长为8cm时,它周长为:8+8+5=21(cm)∴这个三角形周长为18cm或21cm经典例题第25页ABCD┓E11.如图,已知:AD是△ABC国线,△ABC面积60cm2,求ABD面积。解:作AE⊥BC,垂足为E,∵AD是△ABC中线,∴BD=CD经典例题第26页12、如图,∠1=∠2,∠3=∠4,∠A=100°,求x值。ABC2314x解:∵∠1=∠2∠3=∠4∴∠ABC=2∠2∠ACB=2∠4
在△ABC中∠A+∠ABC+∠ACB=180°∴∠A+2(∠2+∠4)=180°∵∠A=100°∴∠2+∠4=40°∵∠2+∠4+x=180°
∴x=140°经典例题第27页1DAB13、已知∠B=420,∠A+100=∠1,∠ACD=640,说明AB∥CD。ABCD1解:∵∠A+∠B+∠1=1800(三角形内角和等于1800)∴∠A+420+∠A+100=1800又∵∠B=420,∠1=∠A+100∴2∠A=1280,∴∠A=640,又∵∠ACD=640∴∠A=∠ACD∴AB∥CD(内错角相等,两直线平行)经典例题第28页B14.如图:CE是△ACB外角平分线与BA延长线交于点E,则∠CAE度数是_______求证:∠BAC>∠BDABCE12解:∵CE是角平分线
∴∠1=∠2
在△ACE中∠BAC>∠1
在△BCE中∠2>∠B∴∠BAC>∠B65°经典例题第29页15.如图:求证:∠A+∠B+∠C=∠ADCBCADE解:连接BD并延长到E∵∠ADE=∠ABD+∠A∠CDE=∠CBD+∠C∵∠ADC=∠ABD+∠CBD∠ABC=∠ABD+∠A∴∠A+∠ABC+∠C=∠ADCF经典例题第30页友情提醒:把图形内部七边形各角看作外部三角形外角,分析可得16、求∠A+∠B+∠C+∠D+∠E+∠F+∠G度数。AGFEDCB7×180O-2×360O=540O经典例题第31页17、小明在计算某个多边形内角和时,因为粗心他遗漏一个内角,求得内角和1680°,你能否求得他遗漏内角和多边形内角和正确结果吗?解:解:设这个多边形边数为n,这个角为α,依据题意得,(n-2)•180°=1680°+α,即α=(n-2)•180°-1680°,∵0<α<180°,∴0<(n-2)•180°-1680°<180°∵n是整数,∴n=12∴α=(n-2)•180°-1680°=120°,答:少算这个角度数为120°,这个多边形边数为18.经典例题第32页随堂检测101试卷库三角形复习随堂测试
同学们要认真答题哦!第33页
1、三角形三个内角度数分别是(x+y)o,(x-y)o,xo,且x>y>0,则该三角形有一个内角为()A、30O B、45O C、60O D、90O2、把14cm长细铁丝截成三段,围成不等边三角形,而且使三边长均为整数,那么()A、只有一个截法 B、只有两种截法C、有三种截法 D、有四种截法3、等腰三角形腰长为a,底为X,则X取值范围是()
A、0<X<2a B、0<X<aC、0<X<a/2 D、0<X≤2aCCA随堂检测第34页
4、一个正多边形每一个内角都是120o,这个多边形是()A、正四边形 B、正五边形 C、正六边形 D、正七边形5、一个多边形木板,截去一个三角形后(截线不经过顶点),得到新多边形内角和为2160o,则原多边形边数为( ) A、13条 B、14条 C、15条 D、16条6、以下说法中,错误是( ) A、一个三角形中最少有一个角小于60O;B、有一个外角是锐角三角形是钝角三角形;C、三角形外角中必有两个角是钝角;D、锐角三角形中两锐角和必定小于60O;CAD随堂检测第35页1.一个三角形三边长是整数,周长为5,则最小边为
;2.木工师傅做完门框后,为预防变形,通常在角上钉一斜条,依据是
;3.小明绕五边形各边走一圈,他共转了
度。4.两多边形边数分别是m,n条,且各多边形内角相等,又满足1/m+1/n=1/4,则各取一外角和为
;5.以下正多边形(1)正三角形(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲亢健康宣教比赛
- 感染科病原菌性腹泻诊疗要点
- 讲师课前自我介绍
- 科室三级质控方法
- 就业协议书公司不签
- 收购团队 协议书
- 2025-2026学年安徽省宿州市七年级数学上册期中考试试卷及答案
- 苏课新版初一历史上册月考考试试题及答案
- 系统集成网络七层协议书
- 双方补充协议书
- 2025年甘肃省庆阳市公安局面向社会招聘警务辅助人员58人考试参考试题及答案解析
- 2025江苏宿迁泗阳县部分县属国有企业招聘劳务派遣人员考试参考试题及答案解析
- 山东省名校考试联盟2026届高三上学期10月阶段性检测物理试卷(含答案)
- 服务器健康巡检规定
- 第16课奇石课件
- 餐饮业员工岗位职责及考核标准手册
- 危化品安全管理条例
- 2025年内蒙古交通集团笔试考试试题
- 2025年初中道德与法治八年级上学期期中测试试卷
- 低压抢修安全培训课件
- 铁路礼仪培训课件
评论
0/150
提交评论