2024届江苏省扬州市广陵区竹西中学数学九上期末综合测试试题含解析_第1页
2024届江苏省扬州市广陵区竹西中学数学九上期末综合测试试题含解析_第2页
2024届江苏省扬州市广陵区竹西中学数学九上期末综合测试试题含解析_第3页
2024届江苏省扬州市广陵区竹西中学数学九上期末综合测试试题含解析_第4页
2024届江苏省扬州市广陵区竹西中学数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省扬州市广陵区竹西中学数学九上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°2.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是()A. B. C. D.3.关于抛物线,下列结论中正确的是()A.对称轴为直线B.当时,随的增大而减小C.与轴没有交点D.与轴交于点4.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球5.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形6.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°7.下列事件中,属于必然事件的是()A.明天太阳从北边升起 B.实心铅球投入水中会下沉C.篮球队员在罚球线投篮一次,投中 D.抛出一枚硬币,落地后正面向上8.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1009.下列各点中,在反比例函数图像上的是()A. B. C. D.10.反比例函数经过点(1,),则的值为()A.3 B. C. D.二、填空题(每小题3分,共24分)11.如图,,如果,那么_________________.12.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.13.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.14.钟表的轴心到分钟针端的长为那么经过分钟,分针针端转过的弧长是_________________.15.如图,在矩形ABCD中,AB=6,BC=4,M是AD的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△,连接,则的最小值是________16.已知扇形的弧长为4π,圆心角为120°,则它的半径为_____.17.如图,分别为矩形的边,的中点,若矩形与矩形相似,则相似比等于__________.18.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行m才能停下来.三、解答题(共66分)19.(10分)如图,已知是原点,两点的坐标分别为,.(1)以点为位似中心,在轴的左侧将扩大为原来的两倍(即新图与原图的相似比为),画出图形,并写出点的对应点的坐标;(2)如果内部一点的坐标为,写出点的对应点的坐标.20.(6分)2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.21.(6分)请画出下面几何体的三视图22.(8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.23.(8分)解下列方程:24.(8分)平面直角坐标系中有两点、,我们定义、两点间的“值”直角距离为,且满足,其中.小静和佳佳在解决问题:(求点与点的“1值”直角距离)时,采用了两种不同的方法:(方法一):;(方法二):如图1,过点作轴于点,过点作直线与轴交于点,则请你参照以上两种方法,解决下列问题:(1)已知点,点,则、两点间的“2值”直角距离.(2)函数的图像如图2所示,点为其图像上一动点,满足两点间的“值”直角距离,且符合条件的点有且仅有一个,求出符合条件的“值”和点坐标.(3)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走,因此,两地之间修建垂直和平行的街道常常转化为两点间的“值”直角距离,地位于地的正东方向上,地在点东北方向上且相距,以为圆心修建了一个半径为的圆形湿地公园,现在要在公园和地之间修建观光步道.步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元,问:修建这一规光步道至少要多少万元?25.(10分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.26.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【题目详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【题目点拨】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.2、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可.【题目详解】解:由题意可得出:两个三角形的相似比为:,所以另一个三角形最短边长为:.故选:B.【题目点拨】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键.3、B【分析】根据二次函数的图像与性质即可得出答案.【题目详解】A:对称轴为直线x=-1,故A错误;B:当时,随的增大而减小,故B正确;C:顶点坐标为(-1,-2),开口向上,所以与x轴有交点,故C错误;D:当x=0时,y=-1,故D错误;故答案选择B.【题目点拨】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.4、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【题目详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【题目点拨】本题考查频率估算概率,关键在于通过图象得出有利信息.5、B【分析】根据轴对称和中心对称图形的概念判断即可.【题目详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【题目点拨】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.6、B【解题分析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.7、B【解题分析】必然事件就是一定会发生的事件,依据定义即可判断.【题目详解】A、明天太阳从北边升起是不可能事件,错误;B、实心铅球投入水中会下沉是必然事件,正确;C、篮球队员在罚球线投篮一次,投中是随机事件,错误;D、抛出一枚硬币,落地后正面向上是随机事件,错误;故选B.【题目点拨】考查的是必然事件、不可能事件、随机事件的概念,必然事件是指在一定条件下,一定发生的事件.8、A【解题分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【题目详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【题目点拨】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.9、C【分析】把每个点的坐标代入函数解析式,从而可得答案.【题目详解】解:当时,故A错误;当时,故B错误;当时,故C正确;当时,故D错误;故选C.【题目点拨】本题考查的是反比例函数图像上点的坐标特点,掌握以上知识是解题的关键.10、B【解题分析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【题目详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【题目点拨】本题主要考查了用待定系数法求反比例函数的解析式,.二、填空题(每小题3分,共24分)11、【分析】根据平行线分线段成比例定理解答即可.【题目详解】解:∵,∴,即,解得:.故答案为:.【题目点拨】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.12、3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【题目详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【题目点拨】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.13、【分析】先设一个阴影部分的面积是x,可得整个阴影面积为3x,整个图形的面积是7x,再根据几何概率的求法即可得出答案.【题目详解】设一个阴影部分的面积是x,∴整个阴影面积为3x,整个图形的面积是7x,∴这个点取在阴影部分的概率是=,故答案为:【题目点拨】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14、【分析】钟表的分针经过40分钟转过的角度是,即圆心角是,半径是,弧长公式是,代入就可以求出弧长.【题目详解】解:圆心角的度数是:,弧长是.【题目点拨】本题考查了求弧长,正确记忆弧长公式,掌握钟面角是解题的关键.15、【分析】由折叠的性质可得AM=A′M=2,可得点A′在以点M为圆心,AM为半径的圆上,当点A′在线段MC上时,A′C有最小值,由勾股定理可求MC的长,即可求A′C的最小值.【题目详解】∵四边形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD边的中点,∴AM=MD=2,∵将△AMN沿MN所在直线折叠,∴AM=A′M=2,∴点A′在以点M为圆心,AM为半径的圆上,∴如图,当点A′在线段MC上时,A′C有最小值,∵MC===2,∴A′C的最小值=MC−MA′=2−2,故答案为:2−2.【题目点拨】本题主要考查了翻折变换,矩形的性质、勾股定理,解题的关键是分析出A′点运动的轨迹.16、6【解题分析】根据弧长公式可得.【题目详解】解:∵l=nπr180,∵l=4π,n=120∴4π=120πr180,

解得:r=6,

【题目点拨】本题考查弧长的计算公式,牢记弧长公式是解决本题的关键.17、(或)【分析】根据矩形的性质可得EF=AB=CD,AE=AD=BC,根据相似的性质列出比例式,即可得出,从而求出相似比.【题目详解】解:∵分别为矩形的边,的中点,∴EF=AB=CD,AE=AD=BC,∵矩形与矩形相似∴∴∴∴相似比=(或)故答案为:(或).【题目点拨】此题考查的是求相似多边形的相似比,掌握相似多边形的性质是解决此题的关键.18、1.【解题分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.∵﹣1.5<0,∴函数有最大值.∴,即飞机着陆后滑行1米才能停止.三、解答题(共66分)19、(1)如图,即为所求,见解析;点的对应点的坐标为,点的对应点的坐标为;(2)点的对应点的坐标为.【分析】(1)延长BO,CO到B′、C′,使OB′、OC′的长度是OB、OC的2倍.顺次连接三点即可;

(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【题目详解】(1)如图,即为所求,点的对应点的坐标为,点的对应点的坐标为.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【题目点拨】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.20、(1)40,补图见解析;(2)10,40,144;(3)【解题分析】试题分析:(1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;(2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;(3)利用列举法即可求解.试题解析:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40-4-16-12=8(人).(2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;(3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)=.考点:1.条形统计图;2.扇形统计图;3.列表法与树状图法.21、详见解析.【分析】根据几何体分别画出从正面,上面和左面看到的图形即可.【题目详解】如图所示:主视图左视图俯视图【题目点拨】本题主要考查几何体的三视图,掌握三视图的画法是解题的关键.22、(1)分别为120元、200元(2)有三种购买方案,见解析【解题分析】(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得,解得.∴一套课桌凳和一套办公桌椅的价格分别为120元、200元.(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意有1600≤80000-120×20m-200×m≤24000,解得,.∵m为整数,∴m=22、23、24,有三种购买方案:

方案一

方案二

方案三

课桌凳(套)

440

460

480

办公桌椅(套)

22

23

24

(1)根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可.(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出不等式组求出即可.23、x1=5,x2=1.【解题分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】x2-10x+25=2(x-5),

(x-5)2-2(x-5)=0,

(x-5)(x-5-2)=0,

x-5=0,x-5-2=0,

x1=5,x2=1.【题目点拨】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.24、(1)10(2),(3)【分析】(1)根据直角距离的公式,直接代入求解即可;(2)设点C的坐标为,代入直角距离公式可得根据根的判别式求出k的值,即可求出点C的坐标;(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E,先证明△ADE是等腰直角三角形,从而得出,再根据直角距离的定义,即可求出出最低的成本.【题目详解】(1)∵,点,点∴;(2)设点C的坐标为∵∴∵∴∴∵符合条件的点有且仅有一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论