




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省宜昌市点军区数学九年级第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.方程的解是()A. B. C., D.,2.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;3.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5% B.8% C.10% D.11%4.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转得到月牙②,则点A的对应点A’的坐标为()A.(2,2) B.(2,4) C.(4,2) D.(1,2)5.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.如图,在正方形ABCD中,AB=2,P为对角线AC上的动点,PQ⊥AC交折线于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.7.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.8.已知反比例函数,当x>0时,y随x的增大而增大,则k的取值范围是()A.k>0 B.k<0 C.k≥1 D.k≤19.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.110.如图,已知为的直径,点,在上,若,则()A. B. C. D.二、填空题(每小题3分,共24分)11.在、、、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是__________.12.如图,位似图形由三角尺与其灯光下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为_______㎝.13.若实数、满足,则以、的值为边长的等腰三角形的周长为.14.如图,,,是上的三个点,四边形是平行四边形,连接,,若,则_____.15.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.16.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.17.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=________.(用单位向量表示)18.把二次函数变形为的形式为_________.三、解答题(共66分)19.(10分)在平面直角坐标系中,直线交轴于点,交轴于点,,点的坐标是.(1)如图1,求直线的解析式;(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值.20.(6分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?21.(6分)已知抛物线与轴的两个交点是点,(在的左侧),与轴的交点是点.(1)求证:,两点中必有一个点坐标是;(2)若抛物线的对称轴是,求其解析式;(3)在(2)的条件下,抛物线上是否存在一点,使?如果存在,求出点的坐标;如果不存在,请说明理由.22.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=1.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.23.(8分)(1)解方程:(2)如图已知⊙的直径,弦与弦平行,它们之间的距离为7,且,求弦的长.24.(8分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?25.(10分)如图,,.与相似吗?为什么?26.(10分)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.(1)根据图象直接写出y与x之间的函数关系式.(2)设这种商品月利润为W(元),求W与x之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?
参考答案一、选择题(每小题3分,共30分)1、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【题目详解】∵,∴,∴,∴,∴,.故选C.【题目点拨】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.2、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【题目详解】∵多边形从一个顶点出发可引出4条对角线,
∴,
解得:,
∴内角和;任何多边形的外角和都等于360.故选:A.【题目点拨】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.3、A【分析】设平均每次下调的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,即可得出结果.【题目详解】设平均每次下调的百分率为x,依题意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A.【题目点拨】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x的方程,是解题的关键.4、B【题目详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.5、A【分析】设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【题目详解】设反比例函数y=(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-的图象上.故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6、B【分析】因为点P运动轨迹是折线,故分两种情况讨论:当点P在A—D之间或当点P在D—C之间,分别计算其面积,再结合二次函数图象的基本性质解题即可.【题目详解】分两种情况讨论:当点Q在A—D之间运动时,,图象为开口向上的抛物线;当点Q在D—C之间运动时,如图Q1,P1位置,由二次函数图象的性质,图象为开口向下的抛物线,故选:B.【题目点拨】本题考查二次函数图象基本性质、其中涉及分类讨论法、等腰直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.7、B【解题分析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.8、B【分析】根据反比例函数的性质,当x>0时,y随x的增大而增大得出k的取值范围即可.【题目详解】解:∵反比例函数中,当x>0时,y随x的增大而增大,∴k<0,故选:B.【题目点拨】本题考查的是反比例函数的性质,反比例函数(k≠0)中,当k>0时,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大.9、B【解题分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(1,1),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=1.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=×(1+1)×1=2,从而得出S△AOB=2.【题目详解】∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是1和4,∴当x=1时,y=1,即A(1,1),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=1,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=×(1+1)×1=2,∴S△AOB=2,故选B.【题目点拨】本题考查了反比例函数中k的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=|k|是解题的关键.10、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【题目详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【题目点拨】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.二、填空题(每小题3分,共24分)11、【分析】根据反比例函数的图象在第二、第四象限得出,最后利用概率公式进行求解.【题目详解】∵反比例函数的图象在第二、第四象限,∴,∴该函数图象在第二、第四象限的概率是,故答案为:.【题目点拨】本题考查了反比例函数的图象,等可能情况下的概率计算公式,熟练掌握反比例函数图象的特征与概率公式是解题的关键.12、20cm【题目详解】解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,∴投影三角形的对应边长为:8÷=20cm.故选B.【题目点拨】本题主要考查了位似图形的性质以及中心投影的应用,根据对应边的比为2:5,再得出投影三角形的对应边长是解决问题的关键.13、1.【解题分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣2=0,解得x=4,y=2.①4是腰长时,三角形的三边分别为4、4、2,∵4+4=2,∴不能组成三角形,②4是底边时,三角形的三边分别为4、2、2,能组成三角形,周长=4+2+2=1.所以,三角形的周长为1.14、64【分析】先根据圆周角定理求出∠O的度数,然后根据平行四边形的对角相等求解即可.【题目详解】∵,∴∠O=2,∵四边形是平行四边形,∴∠O=.故答案为:64.【题目点拨】本题考查了圆周角定理,平行四变形的性质,熟练掌握圆周角定理是解答本题的关键.在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.15、2-2【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【题目详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为:(2-2)cm.【题目点拨】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.16、【分析】结合已知条件,作出辅助线,通过全等得出ME=GN,且随着点F的移动,ME的长度不变,从而确定当点N与点D重合时,使线段DG最小.【题目详解】解:如图所示,过点E做EM⊥AB交BA延长线于点M,过点G作GN⊥AD交AD于点N,∴∠EMF=∠GNE=90°∵四边形ABCD是平行四边形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG为EF逆时针旋转120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF与△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴当点N与点D重合时,使线段DG最小,如图所示,此时,故答案为:.【题目点拨】本题考查了平行四边形的性质、旋转的性质、全等三角形的构造、几何中的动点问题,解题的关键是作出辅助线,得到全等三角形,并发现当点N与点D重合时,使线段DG最小.17、【解题分析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,故答案为:.18、【分析】利用配方法变形即可.【题目详解】解:故答案为:【题目点拨】本题考查了二次函数的的解析式,熟练掌握配方法是解题的关键.三、解答题(共66分)19、(1);(2);(3)【分析】(1)求出点B的坐标,设直线解析式为,代入A、B即可求得直线解析式;(2)过点作于点,延长交于点,通过证明≌,可得,,故点的横坐标为,,设,可求得,故S与的函数关系式为;(3)延长、交于点,过点作点,连接、,先证明≌,可得,通过等量代换可得,再由勾股定理可得,结合即可解得.【题目详解】(1)∵∴,∴∴点设直线解析式为解得,∴直线解析式为(2)过点作于点,延长交于点,∵轴,轴∴∴∴四边形是矩形,∴,∴,∴≌∴,,点的横坐标为,,设,则,∵∴∴∴(3)延长、交于点,过点作点,连接、由(2)可知,∴又∵∵∴∴,,延长交于点,∵,∴∵∴,,∴≌∴∵∴∴∴∵∴∵∴由勾股定理可得∵∴,∴【题目点拨】本题考查了直线解析式的几何问题,掌握直线解析式的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.20、(1)32;(2)每件商品应降价2元时,该商店每天销售利润为12元.【分析】(1)根据销售单价每降低2元,平均每天可多售出4件,可得若降价6元,则平均每天可多售出3×4=12件,即平均每天销售数量为1+12=32件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【题目详解】解:(1)若降价6元,则平均每天销售数量为1+4×3=32件.故答案为32;(2)设每件商品应降价x元时,该商店每天销售利润为12元.根据题意,得(40﹣x)(1+2x)=12,整理,得x2﹣30x+2=0,解得:x1=2,x2=1.∵要求每件盈利不少于25元,∴x2=1应舍去,解得:x=2.答:每件商品应降价2元时,该商店每天销售利润为12元.【题目点拨】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.21、(1)见解析;(2);(3)或【分析】(1)将抛物线表达式变形为,求出与x轴交点坐标即可证明;(2)根据抛物线对称轴的公式,将代入即可求得a值,从而得到解析式;(3)分点P在AC上方和下方两种情况,结合∠ACO=45°得出直线PC与x轴所夹锐角度数,从而求出直线PC解析式,继而联立方程组,解之可得答案.【题目详解】解:(1)=,令y=0,则,,则抛物线与x轴的交点中有一个为(-2,0);(2)抛物线的对称轴是:=,解得:,代入解析式,抛物线的解析式为:;(3)存在这样的点,,,如图1,当点在直线上方时,记直线与轴的交点为,,,,则,,则,,求得直线解析式为,联立,解得或,,;如图2,当点在直线下方时,记直线与轴的交点为,,,,则,,,求得直线解析式为,联立,解得:或,,,综上,点的坐标为,或,.【题目点拨】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.22、(1)k=12;(2)①3;②【分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)①由三角形面积公式可求解;②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【题目详解】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴,∴,∴点A的坐标为(2,6).∵A为反比例函数图象上的一点,∴;(2)①∵BC⊥x轴,OB=1,点C在反比例函数上,∴,∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,∴S△ABC;②∵BC⊥x轴,OB=1,点C在反比例函数上,∴,∵AH∥BC,OH=BH,∴MH=BC=,∴∵AM∥BC,∴△ADM∽△BDC,∴.【题目点拨】本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,利用图象上点的坐标特征及相似三角形的性质是解题的关键.23、(1);(2)1.【分析】(1)先移项,然后利用因式分解法解方程即可(2)作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理求出AM,根据勾股定理求出OM,根据题意求出ON,根据勾股定理、垂径定理计算即可.【题目详解】(1)解:∵或(2)作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则∵∴点在同一条直线上,在中∴在中,∵∴【题目点拨】本题考查了解一元二次方程、垂径定理和勾股定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.24、(1)y=﹣2x2+120x﹣1600;(2)当销售单价定为每双30元时,每天的利润最大,最大利润为1元.【分析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.【题目详解】(1)y=w(x﹣20)=(﹣2x+80)(x﹣20)=﹣2x2+120x﹣1600;(2)y=﹣2(x﹣30)2+1.∵20≤x≤40,a=﹣2<0,∴当x=30时,y最大值=1.答:当销售单价定为每双30元时,每天的利润最大,最大利润为1元.【题目点拨】本题考查的是二次函数的应用.(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.25、相似,见解析【分析】利用“两个角对应相等,三角形相似”证得△ABC与△ADE相似.【题目详解】∵,∴∠BAD+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新质生产力绿色出行
- 血管周细胞瘤的临床护理
- 2025典当借款合同范本C
- 沈阳高一数学试卷及答案
- 商品学期末试卷及答案
- 2025装饰装修劳务分包合同(正式)
- 智能设备用户体验设计考核试卷
- 玉米加工与农产品精深加工考核试卷
- 浙江国企招聘2025上半年嘉兴市属国有企业招聘97人笔试参考题库附带答案详解
- 纺织设备电气控制技术考核试卷
- 2024年黑龙江鹤岗公开招聘社区工作者考试试题答案解析
- 2025年度虚拟电厂分析报告
- 2024年浙江公路技师学院招聘笔试真题
- 2025年锅炉水处理作业人员G3证考试试题题库(200题)
- 2025年中考语文一轮专题复习:古诗词曲梳理复习重点整合
- 2025-2030中国菊芋菊粉行业市场发展趋势与前景展望战略研究报告
- 2021碳纤维复合芯导线配套金具技术条件 第2部分:接续管
- 资料对外提供管理制度
- 公路养护机械安全操作
- 2025年中国智能可穿戴设备市场深度调研分析及投资前景研究预测报告
- 2025-2030国内绿色蔬菜行业市场发展现状及发展前景与投资机会研究报告
评论
0/150
提交评论