常州市重点中学2024届数学九年级第一学期期末检测试题含解析_第1页
常州市重点中学2024届数学九年级第一学期期末检测试题含解析_第2页
常州市重点中学2024届数学九年级第一学期期末检测试题含解析_第3页
常州市重点中学2024届数学九年级第一学期期末检测试题含解析_第4页
常州市重点中学2024届数学九年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

常州市重点中学2024届数学九年级第一学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.2.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE重合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),如果BA∥DE,那么n的值是()A.105 B.95 C.90 D.753.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根4.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A. B. C. D.5.已知,则()A.2 B. C.3 D.6.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且7.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或08.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>-1 D.-1<m<09.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③10.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.611.如图是二次函数的部分图象,则的解的情况为()A.有唯一解 B.有两个解 C.无解 D.无法确定12.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20° B.40° C.60° D.80°二、填空题(每题4分,共24分)13.抛物线的开口方向是_____.14.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.15.A、B为⊙O上两点,C为⊙O上一点(与A、B不重合),若∠ACB=100°,则∠AOB的度数为____°.16.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.17.已知分别切于点,为上不同于的一点,,则的度数是_______.18.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.三、解答题(共78分)19.(8分)如图,一次函数y1=k1x+b与反比例函数y1=的图象交于点A(a,﹣1)和B(1,3),且直线AB交y轴于点C,连接OA、OB.(1)求反比例函数的解析式和点A的坐标;(1)根据图象直接写出:当x在什么范围取值时,y1<y1.20.(8分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.21.(8分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?22.(10分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.23.(10分)(1)如图①,点,,在上,点在外,比较与的大小,并说明理由;(2)如图②,点,,在上,点在内,比较与的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点,,点在轴上,试求当度数最大时点的坐标.24.(10分)如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.25.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.26..如图,小明在大楼的东侧A处发现正前方仰角为75°的方向上有一热气球在C处,此时,小亮在大楼的西侧B处也测得气球在其正前方仰角为30°的位置上,已知AB的距离为60米,试求此时小明、小亮两人与气球的距离AC和BC.(结果保留根号)

参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【题目详解】解:∵∠ACB=∠AOB,

而∠AOB=180°-2×20°=140°,

∴∠ACB=×140°=70°.

故选:C.【题目点拨】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.2、A【分析】画出图形求解即可.【题目详解】解:∵三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),BA∥DE,∴旋转角=90°+45°﹣30°=105°,故选:A.【题目点拨】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.3、C【分析】把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【题目详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4、A【题目详解】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系,故排除C.故选A.考点:动点问题的函数图象.5、B【解题分析】直接利用相似三角形的性质求解.【题目详解】∵△ABC∽△A′B′C′,∴又∵AB=8,A’B’=6,∴=.故选B.【题目点拨】此题考查相似三角形的性质,难度不大6、D【解题分析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.7、B【解题分析】设方程的两根为x1,x2,

根据题意得x1+x2=1,

所以a2-2a=1,解得a=1或a=2,

当a=2时,方程化为x2+1=1,△=-4<1,故a=2舍去,

所以a的值为1.

故选B.8、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【题目详解】顶点坐标(m,m+1)在第一象限,则有解得:m>0,故选B.考点:二次函数的性质.9、B【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【题目详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【题目点拨】本题考查了利用频率估计概率,明确概率的定义是解题的关键.10、D【解题分析】试题解析:∵OC⊥AB,OC过圆心O点,在中,由勾股定理得:故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.11、C【分析】根据图象可知抛物线顶点的纵坐标为-3,把方程转化为,利用数形结合求解即可.【题目详解】根据图象可知抛物线顶点的纵坐标为-3,把转化为抛物线开口向下有最小值为-3∴(-3)>(-4)即方程与抛物线没有交点.即方程无解.故选C.【题目点拨】本题考查了数形结合的思想,由题意知道抛物线的最小值为-3是解题的关键.12、B【解题分析】因为旋转后得到△AMN与△ABC相似,则∠AMN=∠C=40°,因为旋转前∠AMN=80°,所以旋转角度为40°,故选B.二、填空题(每题4分,共24分)13、向上【分析】根据二次项系数的符号即可确定答案.【题目详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【题目点拨】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.14、【分析】设AC=3x,AB=5x,可求BC=4x,由旋转的性质可得CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,由题意可证△CEB1∽△DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解.【题目详解】∵∠ACB=90°,sinB=,∴设AC=3x,AB=5x,∴BC==4x,∵将△ABC绕顶点C顺时针旋转,得到△A1B1C,∴CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,∵点E是A1B1的中点,∴CE=A1B1=2.5x=B1E=A1E,∴BE=BC−CE=1.5x,∵∠B=∠B1,∠CEB1=∠BED∴△CEB1∽△DEB∴∴BD=,DE=1.5x,∴A1D=A1E-DE=x,则x:=故答案为:.【题目点拨】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB1∽△DEB是本题的关键.15、160°【分析】根据圆周角定理,由∠ACB=100°,得到它所对的圆心角∠α=2∠ACB=200°,用360°-200°即可得到圆心角∠AOB.【题目详解】如图,∵∠α=2∠ACB,

而∠ACB=100°,

∴∠α=200°,

∴∠AOB=360°-200°=160°.

故答案为:160°.【题目点拨】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.16、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【题目详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长=,故答案为:2π.【题目点拨】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.17、或【分析】连接OA、OB,先确定∠AOB,再分就点C在上和上分别求解即可.【题目详解】解:如图,连接OA、OB,∵PA、PB分别切于A、B两点,∴∠PAO=∠PBO=90°∴∠AOB=360°-90°-90°-80°=100°,当点C1在上时,则∠AC1B=∠AOB=50°当点C2在B上时,则∠AC2B+∠AC1B=180°,即.∠AC2B=130°.故答案为或.【题目点拨】本题主要考查了圆的切线性质和圆周角定理,根据已知条件确定∠AOB和分类讨论思想是解答本题的关键.18、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【题目详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【题目点拨】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.三、解答题(共78分)19、(1)y=,A(﹣3,﹣1);(1)x<﹣3或0<x<1时,y1<y1【分析】(1)把点B的坐标代入y1,利用待定系数法求反比例函数解析式即可,把点A的坐标代入反比例函数解析式进行计算求出a的值,从而得到点A的坐标;(1)根据图象,写出一次函数图象在反比例函数图象下方的x的取值范围即可.【题目详解】(1)一次函数y1=k1x+b与反比例函数y1的图象交于点B(1,3),∴3,∴k1=6,∴反比例函数的解析式为y,∵A(a,﹣1)在y的图象上,∴﹣1,∴a=﹣3,∴点A的坐标为A(﹣3,﹣1);(1)根据图象得:当x<﹣3或0<x<1时,y1<y1.【题目点拨】本题考查了反比例函数与一次函数的交点问题,根据点B的坐标求出反比例函数解析式是解答本题的关键.20、(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为1【分析】(1)先根据一次函数的解析式求出A和C的坐标,再将点A和点C的坐标代入二次函数解析式即可得出答案;(2)先求出顶点D的坐标,再过D点作DM平行于y轴交AC于M,再分别以DM为底求△ADM和△DCM的面积,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【题目详解】解:(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x=1∴点A、C的坐标分别为(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故抛物线的表达式为:y=﹣x2+x+2;(2)y=﹣x2+x+2∴抛物线的顶点D的坐标为,如图1,设直线AC与抛物线的对称轴交于点M直线y=﹣x+2中,当x=时,y=点M的坐标为,则DM=∴△DAC的面积为=;(3)当P到x轴的距离为1时,则①当y=1时,﹣x2+x+2=1,而,所以方程没有实数根②当y=-1时,﹣x2+x+2=-1,解得则点P的坐标为或;综上,存在一点P或,使它到x轴的距离为1.【题目点拨】本题考查的是二次函数,难度适中,需要熟练掌握“铅垂高、水平宽”的方法来求面积.21、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【题目详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【题目点拨】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.22、(4)x4=,x2=;(2)x4=-3,x2=2.【解题分析】试题分析:(4)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,∴△=b2-4ac=(-3)2-4×4×4=3.∴x=.即x4=,x2=;(2)∵因式分解得(x+3)(x-2)=4,∴x+3=4或x-2=4,解得x4=-3,x2=2.考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.23、(1);理由详见解析;(2);理由详见解析;(3),【分析】(1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(2)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(3)根据圆周角定理,结合(1)(2)的结论首先确定圆心的位置,然后即可得出点P的坐标.【题目详解】(1)交于点,连接,如图所示:中又∴(2)延长交于点,连接,如图所示:中又∴(3)由(1)(2)结论可知,当OP=2.5时,∠MPN最大,如图所示:∴OM=2.5,MH=1.5∴∴,【题目点拨】本题考查了圆周角定理、三角形的外角性质的综合应用,熟练掌握,即可解题.24、(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为1.【解题分析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=CE,PM∥CE,PN=BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论