甘肃省兰州市西固区桃园中学2024届九年级数学第一学期期末检测模拟试题含解析_第1页
甘肃省兰州市西固区桃园中学2024届九年级数学第一学期期末检测模拟试题含解析_第2页
甘肃省兰州市西固区桃园中学2024届九年级数学第一学期期末检测模拟试题含解析_第3页
甘肃省兰州市西固区桃园中学2024届九年级数学第一学期期末检测模拟试题含解析_第4页
甘肃省兰州市西固区桃园中学2024届九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市西固区桃园中学2024届九年级数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.能说明命题“关于的方程一定有实数根”是假命题的反例为()A. B. C. D.2.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.3.下列计算错误的是()A. B. C. D.4.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55° B.60° C.65° D.70°5.如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是()A. B. C. D.6.方程x2﹣5=0的实数解为()A. B. C. D.±57.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形8.从1到9这9个自然数中任取一个,是偶数的概率是()A. B. C. D.9.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A. B. C. D.10.我们定义一种新函数:形如(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4 B.3 C.2 D.111.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.212.如图.已知的半径为3,,点为上一动点.以为边作等边,则线段的长的最大值为()A.9 B.11 C.12 D.14二、填空题(每题4分,共24分)13.一元二次方程x(x﹣3)=3﹣x的根是____.14.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.15.用长的铁丝做一个长方形框架,设长方形的长为,面积为,则关于的函数关系式为__________.16.分式方程=1的解为_____17.如图,直线与两坐标轴相交于两点,点为线段上的动点,连结,过点作垂直于直线,垂足为,当点从点运动到点时,则点经过的路径长为__________.18.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.20.(8分)(阅读)辅助线是几何解题中沟通条件与结论的桥梁.在众多类型的辅助线中,辅助圆作为一条曲线型辅助线,显得独特而隐蔽.性质:如图①,若,则点在经过,,三点的圆上.(问题解决)运用上述材料中的信息解决以下问题:(1)如图②,已知.求证:.(2)如图③,点,位于直线两侧.用尺规在直线上作出点,使得.(要求:要有画图痕迹,不用写画法)(3)如图④,在四边形中,,,点在的延长线上,连接,.求证:是外接圆的切线.21.(8分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.22.(10分)根据要求画出下列立体图形的视图.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.24.(10分)如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).25.(12分)在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.(1)如图1,求证:弧AC等于弧CD;(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.26.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.

参考答案一、选择题(每题4分,共48分)1、D【分析】利用m=5使方程x2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.【题目详解】当m=5时,方程变形为x2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.故选D.【题目点拨】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、C【解题分析】试题解析:C.两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.3、A【分析】根据算术平方根依次化简各选项即可判断.【题目详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【题目点拨】此题考查算术平方根,依据,进行判断.4、B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【题目详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=∠BOC=60°.故选B.【题目点拨】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.5、B【解题分析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【题目详解】解:由该图形类同正五边形,正五边形的圆心角是.根据旋转的性质,当该图形围绕点O旋转后,旋转角是72°的倍数时,与其自身重合,否则不能与其自身重合.由于108°不是72°的倍数,从而旋转角是108°时,不能与其自身重合.故选B.【题目点拨】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6、C【分析】利用直接开平方法求解可得.【题目详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【题目点拨】本题考查解方程,熟练掌握计算法则是解题关键.7、D【解题分析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.8、B【解题分析】∵在1到9这9个自然数中,偶数共有4个,∴从这9个自然数中任取一个,是偶数的概率为:.故选B.9、D【解题分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案.【题目详解】在正方形、矩形、菱形、平行四边形中,其中都是中心对称图形,故共有个中心对称图形.故选D.【题目点拨】本题考查了中心对称图形,正确掌握中心对称图形的性质是解题的关键.10、A【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,存在函数值大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【题目详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为或,因此④也是正确的;⑤从图象上看,存在函数值要大于当时的,因此⑤是不正确的;故选A【题目点拨】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.11、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【题目详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【题目点拨】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.12、B【分析】以OP为边向下作等边△POH,连接AH,根据等边三角形的性质通过“边角边”证明△HPA≌△OPM,则AH=OM,然后根据AH≤OH+AO即可得解.【题目详解】解:如图,以OP为边向下作等边△POH,连接AH,∵△POH,△PAM都是等边三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值为11,则OM的最大值为11.故选B.【题目点拨】本题主要考查等边三角形的性质,全等三角形的判定与性质等,解此题的关键在于熟练掌握其知识点,难点在于作辅助线构造等边三角形.二、填空题(每题4分,共24分)13、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【题目详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.14、4+或4﹣【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【题目详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如图2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.综上所述,BC的长是4+或4﹣.故答案为:4+或4﹣.【题目点拨】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.15、或【分析】易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.【题目详解】由题意得:矩形的另一边长=24÷2−x=12−x,则y=x(12−x)=−x2+12x.故答案为或【题目点拨】本题考查了二次函数的应用,掌握矩形周长与面积的关系是解题的关键.16、x=0.1【解题分析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17、【分析】根据直线与两坐标轴交点坐标的特点可得A、B两点坐标,由题意可得点M的路径是以AB的中点N为圆心,AB长的一半为半径的,求出的长度即可.【题目详解】解:∵AM垂直于直线BP,∴∠BMA=90°,∴点M的路径是以AB的中点N为圆心,AB长的一半为半径的,连接ON,∵直线y=-x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=,∴ON=,∴故答案为:.【题目点拨】本题考查了一次函数的综合题,涉及了两坐标轴交点坐标及点的运动轨迹,难点在于根据∠BMA=90°,判断出点M的运动路径是解题的关键,同学们要注意培养自己解答综合题的能力.18、1【解题分析】如图,设△ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC,设半径为r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1,∴△ABC的内切圆的半径为1,故答案为1.三、解答题(共78分)19、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=9,然后解方程得到满足条件的k的值.【题目详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【题目点拨】本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.20、(1)见解析;(2)见解析;(3)见解析【分析】(1)作以为圆心,为半径的圆,根据圆周角性质可得;(2)作以AB中点P为圆心,为半径的圆,根据圆周角定理可得;(3)取的中点,则是的外接圆.由,可得点在的外接圆上.根据切线判定定理求解.【题目详解】(1)如图,由,可知:点,,在以为圆心,为半径的圆上.所以,.(2)如图,点,就是所要求作的点.(3)如图,取的中点,则是的外接圆.由,可得点在的外接圆上.∴.∵,∴.∵,∴.∴.即.∴是外接圆的切线.【题目点拨】考核知识点:多边形外接圆.构造圆,利用圆周角等性质解决问题是关键.21、(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【题目点拨】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.22、答案见解析.【分析】根据主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,即可得到结果.【题目详解】解:如图所示:【题目点拨】本题考查几何体的三视图,作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.23、见解析.【分析】根据位似图形的画图要求作出位似图形即可.【题目详解】解:如图所示,△A1B1C1即为所求.【题目点拨】本题主要考察位似图形的作图,掌握位似图形的画法是解题的关键.24、(1)直线BC与⊙O相切,理由详见解析;(2).【分析】(1)连接OD,由角平分线的定义可得∠DAC=∠DAB,根据等腰三角形的性质可得∠OAD=∠ODA,即可证明OD//AC,根据平行线的性质可得,可得直线BC与⊙O相切;(2)利用弧长公式可求出∠DOE=60°,根据∠DOE的正切可求出BD的长,利用三角形和扇形的面积公式即可得答案.【题目详解】(1)直线与⊙O相切,理由如下:连接,∵是的平分线,∴,∵,∴,∴,∴,∴,∴,∴直线与⊙O相切.(2)∵,劣弧的长为,∴,∴∵,∴,∴.∴BE与劣弧DE所围成的阴影部分的面积为.【题目点拨】本题考查切线的判定、弧长公式及扇形面积,经过半径的外端点并且垂直于这条半径的直线的圆的切线;n°的圆心角所对的弧长为l=(r为半径);圆心角为n°的扇形的面积为S扇形=(r为半径);熟练掌握弧长公式及扇形面积公式是解题关键.25、(1)详见解析;(2)详见解析;(3)4.【分析】(1)如图1,连接BC、CD,先证∠CBA=∠CAD,再证∠CDA=∠CAD,可得出AC=CD,即可推出结论;(2)过点C作CG⊥AD于点G,则∠CGA=90°,证CG垂直平分AD,得出AD=2AG,再证△ACG≌△CAE,推出AG=CE,即可得出AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.【题目详解】(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论