2024届内蒙古自治区呼和浩特市回民区数学九年级第一学期期末质量检测模拟试题含解析_第1页
2024届内蒙古自治区呼和浩特市回民区数学九年级第一学期期末质量检测模拟试题含解析_第2页
2024届内蒙古自治区呼和浩特市回民区数学九年级第一学期期末质量检测模拟试题含解析_第3页
2024届内蒙古自治区呼和浩特市回民区数学九年级第一学期期末质量检测模拟试题含解析_第4页
2024届内蒙古自治区呼和浩特市回民区数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古自治区呼和浩特市回民区数学九年级第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.2.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是()A.140° B.130° C.120° D.110°3.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-24.二次函数的图象如图所示,若点A和B在此函数图象上,则与的大小关系是()A. B. C. D.无法确定5.如图,PA是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是()A.4 B.2 C.1 D.6.若,面积之比为,则相似比为()A. B. C. D.7.现实世界中对称现象无处不在,汉字中也有些具有对称性,下列美术字是轴对称图形的是()A.处 B.国 C.敬 D.王8.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.9.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.10.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,,若为斜边上的中线,则的度数为________.12.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是_____.13.一元二次方程x2﹣2x=0的解是.14.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为_____m.15.“永定楼”,作为门头沟区的地标性建筑,因其坐落在永定河畔而得名.为测得其高度,低空无人机在A处,测得楼顶端B的仰角为30°,楼底端C的俯角为45°,此时低空无人机到地面的垂直距离AE为23米,那么永定楼的高度BC是______米(结果保留根号).16.已知关于x的一元二次方程两根是分别α和β则m=_____,α+β=_____.17.计算:__________.18.如图,AB∥DE,AE与BD相交于点C.若AC=4,BC=2,CD=1,则CE的长为_____.三、解答题(共66分)19.(10分)端午节放假期间,小明和小华准备到巴马的水晶宫(记为A)、百魔洞(记为B)、百鸟岩(记为C)、长寿村(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)求小明选择去百魔洞旅游的概率.(2)用树状图或列表的方法求小明和小华都选择去长寿村旅游的概率.20.(6分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?21.(6分)已知,反比例函数的图象经过点M(2,a﹣1)和N(﹣2,7+2a),求这个反比例函数解析式.22.(8分)2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationallmportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.23.(8分)如图,已知抛物线经过点和点,与轴交于点.(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.①用含的代数式表示线段的长;②连接,,求的面积最大时点的坐标;(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.24.(8分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.25.(10分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.(1)已知抛物线.①在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是;②如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.26.(10分)在平面直角坐标系xOy中,直线y=x+b(k≠0)与双曲线一个交点为P(2,m),与x轴、y轴分别交于点A,B两点.(1)求m的值;(2)求△ABO的面积;

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【题目详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,

抛物线开口向上,m2≥0,

∴抛物线与x轴没有交点,与y轴有1个交点,

∴(2m-1)2-4m2<0

解得故选:A.【题目点拨】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.2、B【分析】根据圆周角定理求出∠ACB,根据三角形内角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【题目详解】∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四点共圆,∴∠D+∠B=180°,∴∠D=130°,故选:B.【题目点拨】此题主要考查圆周角定理以及圆内接四边形的性质,熟练掌握,即可解题.3、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【题目详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【题目点拨】本题考查了二次函数的最值.4、A【分析】由图象可知抛物线的对称轴为直线,所以设点A关于对称轴对称的点为点C,如图,此时点C坐标为(-4,y1),点B与点C都在对称轴左边,从而利用二次函数的增减性判断即可.【题目详解】解:∵抛物线的对称轴为直线,∴设点A关于对称轴对称的点为点C,∴点C坐标为(-4,y1),此时点A、B、C的大体位置如图所示,∵当时,y随着x的增大而减小,,∴.故选:A.【题目点拨】本题主要考查了二次函数的图象与性质,属于基本题型,熟练掌握二次函数的性质是解题关键.5、C【分析】根据题意连接OA由切线定义可知OA垂直AP且OA为半径,以此进行分析求解即可.【题目详解】解:连接OA,已知PA是⊙O的切线,OP交⊙O于点B,可知OA垂直AP且OA为半径,所以三角形OAP为直角三角形,∵,OB=1,∴,OA=OB=1,∴OP=2,BP=OP-OB=2-1=1.故选C.【题目点拨】本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.6、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【题目详解】解:∵两个相似三角形的面积比为9:4,

∴它们的相似比为3:1.

故选:C.【题目点拨】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.7、D【分析】利用轴对称图形定义判断即可.【题目详解】解:四个汉字中,可以看作轴对称图形的是:王,故选:D.【题目点拨】本题考查轴对称图形的定义,轴对称图形是指沿着某条直线对称后能完全重合的图形,熟练掌握轴对称图形的概念是解决本题的关键.8、B【题目详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.9、D【分析】根据三角形全等的判定定理逐项判断即可.【题目详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【题目点拨】本题考查了三角形全等的判定定理,熟记各定理是解题关键.10、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.二、填空题(每小题3分,共24分)11、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得.【题目详解】∵为斜边上的中线∴AD=CD∴∵∴故答案为:.【题目点拨】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.12、【分析】根据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【题目详解】解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=2,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=CD=1,∴DQ=,∴DQ的最小值是,故答案为.【题目点拨】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.13、【分析】方程整理后,利用因式分解法求出解即可.【题目详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案为x1=0,x1=1.14、20m【题目详解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案为20m.15、【分析】过点A作BC的垂线,垂足为D,则∠DAC=45°,∠BAD=30°,进一步推出AD=CD=AE=米,再根据tan∠BAD==,从而求出BD的值,再由BC=BD+CD即可得到结果.【题目详解】解:如图所示,过点A作AD⊥BC于D,则∠DAC=45°,∠BAD=30°,∵AD⊥BC,∠DAC=45°,∴AD=CD=AE=米,在Rt△ABD中,tan∠BAD==,∴BD=AD==23(米)∴BC=BD+CD=(米)故答案为.【题目点拨】本题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.16、-21【分析】首先根据一元二次方程的概念求出m的值,然后根据根与系数的关系即可得出答案.【题目详解】∵是一元二次方程,,解得,.两根是分别α和β,,故答案为:-2,1.【题目点拨】本题主要考查一元二次方程,掌握一元二次方程的概念及根与系数的关系是解题的关键.17、【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可.【题目详解】3-4-1=-2.故答案为:-2.【题目点拨】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.18、1【分析】先证明△ABC∽△EDC,然后利用相似比计算CE的长.【题目详解】解:∵AB∥DE,∴△ABC∽△EDC,∴,即,∴CE=1.故答案为1【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活应用相似三角形相似的性质进行几何计算.也考查了解直角三角形.三、解答题(共66分)19、(1);(2)【分析】(1)利用概率公式计算即可;(2)列树状图求事件的概率即可.【题目详解】解:(1)∵小明准备到巴马的水晶宫(记为A)、百魔洞(记为B)、百鸟岩(记为C)、长寿村(记为D)的一个景点去游玩,∴小明选择去百魔洞旅游的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去长寿村旅游的概率=.【题目点拨】此题考查概率的计算公式,列树状图求事件的概率,正确列树状图表示所有的等可能的结果是解题的关键.20、(1);(2)每件商品的销售价应定为元或元;(3)售价定为元/件时,每天最大利润元.【分析】(1)待定系数法求解可得;

(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;

(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【题目详解】(1)设与之间的函数关系式为,

由所给函数图象可知:

解得:.

故与的函数关系式为;(2)根据题意,得:,

整理,得:,

解得:或,

答:每件商品的销售价应定为元或元;(3)∵,

∴当时,,

∴售价定为元/件时,每天最大利润元.【题目点拨】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.21、y=﹣.【分析】根据了反比例函数图象上点的坐标特征得到,解得,则可确定M点的坐标为,然后设反比例函数解析式为,再利用反比例函数图象上点的坐标特征得到.【题目详解】解:根据题意得,解得,所以点的坐标为,设反比例函数解析式为,则,所以反比例函数解析式为.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.22、(1);(2).【分析】(1)由于每个国家馆被选择的可能性相同,即可得到中国馆被选中的概率为;(2)画树状图列出所有可能性,即可求出概率.【题目详解】.解:(1)在这四个国家馆中任选一个参观,每个国家馆被选择的可能性相同∴在这四个国家馆中小滕选择.中国馆的概率是;(2)画树状图分析如下:共有16种等可能的结果,小滕和小刘恰好选择同一国家馆参观的结果有4种∴小滕和小刘恰好选择同一国家馆参观的概率.【题目点拨】本题考查了树状图求概率,属于常考题型.23、(1)y=x2﹣4x+1;(2)①用含m的代数式表示线段PD的长为﹣m2+1m;②△PBC的面积最大时点P的坐标为(,﹣);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).【分析】(1)根据已知抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0)代入即可求解;

(2)①先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;

②用含m的代数式表示出△PBC的面积,可得S是关于m的二次函数,即可求解;

(1)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标.【题目详解】(1)∵抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+1;(2)①设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC=﹣x+1.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.答:用含m的代数式表示线段PD的长为﹣m2+1m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+1=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.

根据题意,点E(2,1),

∴EF=CF=2,

∴EC=2,

根据菱形的四条边相等,

∴ME=EC=2,∴M(2,1-2)或(2,1+2)

当EM=EF=2时,M(2,1)∴点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).【题目点拨】本题考查了二次函数与方程、几何知识的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.24、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC=DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.如图∠D2AC=45°,同理易得AD2=.【题目详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=2.已知∠D1A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论