河南省周口一中学2024届数学九上期末统考试题含解析_第1页
河南省周口一中学2024届数学九上期末统考试题含解析_第2页
河南省周口一中学2024届数学九上期末统考试题含解析_第3页
河南省周口一中学2024届数学九上期末统考试题含解析_第4页
河南省周口一中学2024届数学九上期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省周口一中学2024届数学九上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,点、、是上的点,,连结交于点,若,则的度数为()A. B. C. D.2.一个盒子中装有2个蓝球,3个红球和若干个黄球,小明通过多次摸球试验后发现,摸取到黄球的频率稳定在0.5左右,则黄球有()个.A.4 B.5 C.6 D.103.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.4.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于 B.等于 C.大于 D.无法确定6.图中几何体的俯视图是()A. B. C. D.7.如图是某个几何体的三视图,该几何体是()A.长方体 B.圆锥 C.三棱柱 D.圆柱8.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G,AF⊥BE于F,图中相似三角形的对数是()A.5 B.7 C.8 D.109.(湖南省娄底市九年级中考一模数学试卷)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.9910.方程的解是()A. B. C. D.11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=10012.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B. C. D.二、填空题(每题4分,共24分)13.如图,已知电流在一定时间段内正常通过电子元件“”的概率是12,在一定时间段内,A,B之间电流能够正常通过的概率为.14.如图所示的点阵中,相邻的四个点构成正方形,小球只在矩形内自由滚动时,则小球停留在阴影区域的概率为___________.15.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.16.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF的最小值是_____.17.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.18.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.三、解答题(共78分)19.(8分)如图,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴交点为C,M(3,0)、N(0,﹣2)分别是x轴、y轴上的点.(1)求点C的坐标(用含m的代数式表示);(2)若抛物线与x轴有两个交点A、B,是否存在这样的m,使得线段AB=MN,若存在,求出m的值,若不存在,请说明理由;(3)若抛物线与线段MN有公共点,求m的取值范围.20.(8分)飞行员将飞机上升至离地面米的点时,测得点看树顶点的俯角为,同时也测得点看树底点的俯角为,求该树的高度(结果保留根号).21.(8分)阅读以下材料,并按要求完成相应的任务.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现在的数学语言表达是:如图,为的直径,弦,垂足为,寸,尺,其中1尺寸,求出直径的长.解题过程如下:连接,设寸,则寸.∵尺,∴寸.在中,,即,解得,∴寸.任务:(1)上述解题过程运用了定理和定理.(2)若原题改为已知寸,尺,请根据上述解题思路,求直径的长.(3)若继续往下锯,当锯到时,弦所对圆周角的度数为.22.(10分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.23.(10分)(问题情境)如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.24.(10分)如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)25.(12分)如图,四边形ABCD内接于圆,AD、BC的延长线交于点E,F是BD延长线上一点,DE平分∠CDF.求证:AB=AC.26.在中,分别是的中点,连接求证:四边形是矩形;请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).

参考答案一、选择题(每题4分,共48分)1、B【分析】根据平行可得,∠A=∠O,据圆周角定理可得,∠C=∠O,结合外角的性质得出∠ADB=∠C+∠A=60°,可求出结果.【题目详解】解:∵OB∥AC,∠A=∠O,又∠C=∠O,∴∠ADB=∠C+∠A=∠O+∠O=60°,∴∠O=40°.故选:B.【题目点拨】本题主要考查圆周角定理、平行线的性质以及外角的性质,熟练掌握同弧所对的圆周角等于圆心角的一半是解题的关键.2、B【分析】设黄球有x个,根据用频率估计概率和概率公式列方程即可.【题目详解】设黄球有x个,根据题意得:=0.5,解得:x=5,答:黄球有5个;故选:B.【题目点拨】此题考查的是用频率估计概率和根据概率求球的数量问题,掌握用频率估计概率和概率公式是解决此题的关键.3、D【分析】根据中心对称图形和轴对称图形的定义即可得解.【题目详解】A、不是中心对称图形,也不是轴对称图形,此项错误B、是中心对称图形,也是轴对称图形,此项错误C、不是中心对称图形,是轴对称图形,此项错误D、是中心对称图形,但不是轴对称图形,此项正确故选:D.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、不是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:A.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【分析】利用概率的意义直接得出答案.【题目详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:,故选:.【题目点拨】此题主要考查了概率的意义,正确把握概率的定义是解题关键.6、D【解题分析】本题考查了三视图的知识找到从上面看所得到的图形即可.从上面看可得到三个矩形左右排在一起,中间的较大,故选D.7、D【分析】首先根据俯视图排除正方体、三棱柱,然后跟主视图和左视图排除圆锥,即可得到结论.【题目详解】∵俯视图是圆,

∴排除A和C,

∵主视图与左视图均是长方形,

∴排除B,

故选:D.【题目点拨】本题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.8、D【解题分析】试题解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选D.9、B【解题分析】现将数字“69”旋转180°,得到的数字是:69,故选B.10、B【解题分析】按照系数化1、开平方的步骤求解即可.【题目详解】系数化1,得开平方,得故答案为B.【题目点拨】此题主要考查一元二次方程的求解,熟练掌握,即可解题.11、A【解题分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【题目详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【题目点拨】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.12、B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【题目详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:;故选:B.【题目点拨】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.二、填空题(每题4分,共24分)13、34【解题分析】根据题意,电流在一定时间段内正常通过电子元件的概率是12即某一个电子元件不正常工作的概率为12则两个元件同时不正常工作的概率为14故在一定时间段内AB之间电流能够正常通过的概率为1-14=3故答案为:3414、【分析】分别求出矩形ABCD的面积和阴影部分的面积即可确定概率.【题目详解】设每相邻两个点之间的距离为a则矩形ABCD的面积为而利用梯形的面积公式和图形的对称性可知阴影部分的面积为∴小球停留在阴影区域的概率为故答案为【题目点拨】本题主要考查随机事件的概率,能够求出阴影部分的面积是解题的关键.15、2【分析】设袋子中红球有x个,求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【题目详解】设袋子中红球有x个,根据题意,得:,解得:x=2,所以袋中红球有2个,故答案为2【题目点拨】此题考查概率公式的应用,解题关键在于求出摸到红球的频率16、【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【题目详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,∴=,∴y=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴x=时,y有最大值,∴CF的最大值为,∴DF的最小值为5﹣=,∴AF的最小值===,故答案为.【题目点拨】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.17、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【题目详解】解:连接OC,

∵CE是⊙O的切线,

∴∠OCE=90°,

∵∠E=20°,

∴∠COD=70°,

∵OC=OD,∴∠ABC=180°-55°=125°,

连接AC,过点A做AF⊥CE交CE于点F,

设OC=OD=r,

∴OE=8+r,

在Rt△OEC中,

由勾股定理可知:(8+r)2=r2+122,

∴r=5,

∵OC∥AF

∴△OCE∽△AEF,故答案为:【题目点拨】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.18、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【题目详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【题目点拨】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.三、解答题(共78分)19、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1【分析】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,即可求解;(3)联立抛物线与直线MN的表达式得:方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,即可求解.【题目详解】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,解得:m;(3)∵M(3,0),N(0,﹣1),∴直线MN的解析式为yx﹣1.∵抛物线与线段MN有公共点,则方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,∴()1﹣4(﹣m+1)≥0,解得:m≤1.【题目点拨】本题考查了二次函数综合运用,涉及到一次函数的性质、解不等式、一元二次方程等,其中(3),确定△≥0,且m﹣4≤﹣1是解答本题的难点.20、(18-6)米【分析】延长BA交过点F的水平线与点C,在Rt△BEF中求出BE的长,在Rt△ACF中求出BC的AC的长,即可求出树的高度.【题目详解】延长BA交过点F的水平线与点C,则四边形BCFE是矩形,∴BC=EF=米,BE=CF,∠EBF=∠BFC=45°,∴BE=EF=米,∴CF=18米,在Rt△ACF中,∵tan∠AFC=,∴AC=,∴AB=(18-)米.【题目点拨】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.21、(1)垂径,勾股;(2)26寸;(3)或【分析】(1)由解题过程可知根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,即可得到答案.

(2)连接OA,设OA=r寸,则OE=DE-r=25-r,再根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,进而得出结论.

(3)当AE=OE时,△AEO是等腰直角三角形,则∠AOE=45°,∠AOB=90°,所以由圆周角定理推知弦AB所对圆周角的度数为45°或135°.【题目详解】解:(1)根据题意知,上述解题过程运用了垂径定理和勾股定理.

故答案是:垂径;勾股;

(2)连接OA,设OA=r寸,则OE=DE-r=(25-r)寸

∵AB⊥CD,AB=1尺,∴AE=AB=5寸

在Rt△OAE中,OA2=AE2+OE2,即r2=52+(25-r)2,解得r=13,

∴CD=2r=26寸

(2)∵AB⊥CD,

∴当AE=OE时,△AEO是等腰直角三角形,

∴∠AOE=45°,

∴∠AOB=2∠AOE=90°,

∴弦AB所对圆周角的度数为∠AOB=45°.

同理,优弧AB所对圆周角的度数为135°.

故答案是:45°或135°.【题目点拨】此题考查圆的综合题,圆周角定理,垂径定理,勾股定理,等腰直角三角形的判定与性质,综合性较强,解题关键在于需要我们熟练各部分的内容,要注意将所学知识贯穿起来.22、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【题目详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.23、(1)证明见解析;(2)AM=DE+BM成立,证明见解析;(3)①结论AM=AD+MC仍然成立;②结论AM=DE+BM不成立.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,易证△ADE≌△NCE,得到AD=CN,再证明AM=NM即可;(2)过点A作AF⊥AE,交CB的延长线于点F,易证△ABF≌△ADE,从而证明AM=FM,即可得证;(3)AM=DE+BM需要四边形ABCD是正方形,故不成立,AM=AD+MC仍然成立.【题目详解】(1)延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论