




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016-2017学年云南省大理州南涧民族中学高一(下)6月月考数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。)1.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳3.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A. B. C. D.4.设非零向量,满足|+|=|﹣|则()A.⊥ B.||=|| C.∥ D.||>||5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63π C.42π D.36π6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B. C. D.7.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A. B. C. D.8.设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减9.如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+210.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.π B. C. D.11.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A. B. C. D.12.函数y=的部分图象大致为()A. B. C. D.二、填空题:(本大题共4小题,每小题5分,共20分。)13.已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.已知α∈(0,),tanα=2,则cos(α﹣)=.15.函数f(x)=sin2x+cosx﹣(x∈)的最大值是.16.设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题:(本大题共6题,共70分。解答应写出文字说明、证明过程或演算步骤.)17.已知||=2,||=1,(2﹣3)•(2+)=9.(1)求向量与的夹角θ;(2)求|+|和cos<,+>的值.18.已知函数f(x)=sin2ωx+sinωxsin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间上的取值范围.19.《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛"活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照 B. C. D.【考点】3P:抽象函数及其应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈,故选:D12.函数y=的部分图象大致为()A. B. C. D.【考点】3O:函数的图象.【分析】判断函数的奇偶性排除选项,利用特殊值判断即可.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.已知α∈(0,),tanα=2,则cos(α﹣)=.【考点】GP:两角和与差的余弦函数;GG:同角三角函数间的基本关系.【分析】根据同角的三角函数的关系求出sinα=,cosα=,再根据两角差的余弦公式即可求出.【解答】解:∵α∈(0,),tanα=2,∴sinα=2cosα,∵sin2α+cos2α=1,解得sinα=,cosα=,∴cos(α﹣)=cosαcos+sinαsin=×+×=,故答案为:15.函数f(x)=sin2x+cosx﹣(x∈)的最大值是1.【考点】HW:三角函数的最值.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈,则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:116.设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是(,+∞).【考点】3T:函数的值.【分析】根据分段函数的表达式,分别讨论x的取值范围,进行求解即可.【解答】解:若x≤0,则x﹣≤﹣,则f(x)+f(x﹣)>1等价为x+1+x﹣+1>1,即2x>﹣,则x>,此时<x≤0,当x>0时,f(x)=2x>1,x﹣>﹣,当x﹣>0即x>时,满足f(x)+f(x﹣)>1恒成立,当0≥x﹣>﹣,即≥x>0时,f(x﹣)=x﹣+1=x+,此时f(x)+f(x﹣)>1恒成立,综上x>,故答案为:(,+∞).三、解答题:(本大题共6题,共70分。解答应写出文字说明、证明过程或演算步骤.)17.已知||=2,||=1,(2﹣3)•(2+)=9.(1)求向量与的夹角θ;(2)求|+|和cos<,+>的值.【考点】9R:平面向量数量积的运算.【分析】(1)根据向量数量积的公式进行转化求解即可.(2)根据向量模长公式以及向量数量积的关系进行转化求解.【解答】解:(1)因为,所以,即16﹣8cosθ﹣3=9,得,因为θ∈,所以.(2)由(1)得知,所以,)因为,所以.18.已知函数f(x)=sin2ωx+sinωxsin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间上的取值范围.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;GL:三角函数中的恒等变换应用.【分析】(Ⅰ)先根据倍角公式和两角和公式,对函数进行化简,再利用T=,进而求得ω(Ⅱ)由(Ⅰ)可得函数f(x)的解析式,再根据正弦函数的单调性进而求得函数f(x)的范围.【解答】解:(Ⅰ)==.∵函数f(x)的最小正周期为π,且ω>0,∴,解得ω=1.(Ⅱ)由(Ⅰ)得.∵,∴,∴.∴,即f(x)的取值范围为.19.《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛”活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).(I)求样本容量n和频率分布直方图中的x,y的值;(II)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈",求至少有两名女生的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)求出样本容量,从而求出x,y的值即可;(Ⅱ)男生2人,女生3人,分别设编号为b1,b2和a1,a2,a3,列出从该组抽取三人“座谈”包含的基本事件,记事件A“至少有两名女生”,列出事件A包含的基本事件,从而求出满足条件的概率即可.【解答】解:(Ⅰ)由题意可知,样本容量,故,∴x=0。100﹣0.004﹣0.010﹣0。016﹣0。040=0。030.∴n=50,x=0.030,y=0.004;(Ⅱ)分数在[80,90)的学生共有5人,由题意知,其中男生2人,女生3人,分别设编号为b1,b2和a1,a2,a3,则从该组抽取三人“座谈”包含的基本事件:(a1,a2,a3),(a1,a2,b1),(a1,a3,b1),(a2,a3,b1),(a1,a2,b2),(a1,a3,b2),(a2,a3,b2),(b1,b2,a1),(b1,b2,a2),(b1,b2,a3),共计10个,记事件A“至少有两名女生”,则事件A包含的基本事件:(a1,a2,a3),(a1,a2,b1),(a1,a3,b1),(a2,a3,b1),(a1,a2,b2),(a1,a3,b2),(a2,a3,b2),共计7个.所以,至少有两名女生的概率为P(A)=.20.已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.(1)求圆C的方程;(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.(Ⅰ)求实数k的取值范围;(Ⅱ)若•=12,求k的值.【考点】J1:圆的标准方程;9R:平面向量数量积的运算.【分析】(1)设圆C的标准方程为(x﹣a)2+(y﹣b)2=r2.由圆C被直线平分可得3a﹣2b=0,结合点A、B在圆上建立关于a、b、r的方程组,解出a、b、r的值即可得到圆C的方程;(2)(I)由题意,得直线l方程为kx﹣y+1=0,根据直线l与圆C有两个不同的交点,利用点到直线的距离建立关于k的不等式,解之即可得到实数k的取值范围;(II)直线l方程与圆C方程联解消去y,得(1+k2)x2﹣(4+4k)x+7=0.设M(x1,y1)、N(x2,y2),利用根与系数的关系、直线l方程和向量数量积的坐标运算公式,化简•=12得到关于k的方程,解之即可得到k的值.【解答】解:(1)设圆C的标准方程为(x﹣a)2+(y﹣b)2=r2∵圆C被直线m:3x﹣2y=0平分,∴圆心C(a,b)在直线m上,可得3a﹣2b=0…①,又∵点A(1,3)、B(2,2)在圆上,∴…②,将①②联解,得a=2,b=3,r=1.∴圆C的方程是(x﹣2)2+(y﹣3)2=1;(2)过点D(0,1)且斜率为k的直线l方程为y=kx+1,即kx﹣y+1=0,(I)∵直线l与圆C有两个不同的交点M、N,∴点C(2,3)到直线l的距离小于半径r,即,解之得<k<;(II)由消去y,得(1+k2)x2﹣(4+4k)x+7=0.设直线l与圆C有两个不同的交点坐标分别为M(x1,y1)、N(x2,y2),可得x1+x2=,x1x2=,∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=++1,∵•=+(++1)=12,解之得k=1.21.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【考点】LY:平面与平面垂直的判定;LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】(1)推导出AB⊥PA,CD⊥PD,从而AB⊥PD,进而AB⊥平面PAD,由此能证明平面PAB⊥平面PAD.(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,则PO⊥底面ABCD,且AD=,PO=,由四棱锥P﹣ABCD的体积为,求出a=2,由此能求出该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,∴VP﹣ABCD=====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.22.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中小学开学综合征心理健康疏导课件
- 开学第一课心理疏导收心教育主题班会
- 2024年广告设计师创新要素试题及答案
- 护理健康教育与护理安全
- 关注实务国际商业美术设计师考试试题及答案
- 2024年织物检验员考试题目试题及答案
- 广告设计师证书考试创意开发题及答案
- 病理职称考试题库及答案
- 安全b考试题库及答案
- 环境保护与纺织行业试题及答案
- 房地产广告效果的评测与分析
- 2025年北京市石景山区九年级初三一模语文试卷(含答案)
- 华大新高考联盟2025届高三4月教学质量测评历史+答案
- T-CASEI 015-2023叉车使用安全管理规范
- 2025年浙江省温州市中考一模语文试题(含答案)
- 首次透析患者健康教育
- 山洪灾害防御知识课件
- 血吸虫防急感课件
- 弱电基础知识单选题100道及答案
- 殡葬法律法规试题及答案
- 带货主播职业发展路径与技能提升指南
评论
0/150
提交评论