2024届湖南省怀化市数学高一上期末质量检测模拟试题含解析_第1页
2024届湖南省怀化市数学高一上期末质量检测模拟试题含解析_第2页
2024届湖南省怀化市数学高一上期末质量检测模拟试题含解析_第3页
2024届湖南省怀化市数学高一上期末质量检测模拟试题含解析_第4页
2024届湖南省怀化市数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省怀化市数学高一上期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.已知,,,则a,b,c的大小关系是()A. B.C. D.3.设,则下列不等式中不成立的是()A. B.C. D.4.已知集合,则()A. B.C. D.5.已知函数部分图象如图所示,则A. B.C. D.6.某国近日开展了大规模COVID-19核酸检测,并将数据整理如图所示,其中集合S表示()A.无症状感染者 B.发病者C.未感染者 D.轻症感染者7.函数的定义域是A. B.C. D.8.若和都是定义在上的奇函数,则()A.0 B.1C.2 D.39.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)10.若偶函数在区间上单调递增,且,则不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:__________,__________12.若()与()互为相反数,则的最小值为______.13.已知,,则_________.14.若直线与互相垂直,则点到轴的距离为__________15.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)16.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数f(x)=(x>0)(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求+的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围18.已知正方体ABCD-的棱长为2.(1)求三棱锥的体积;(2)证明:.19.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值20.已知,,且,,求的值21.已知函数.(1)求的单调递增区间;(2)设,已知,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由与互相推出的情况结合选项判断出答案【题目详解】,由可以推出,而不能推出则“”是“”的充分而不必要条件故选:A2、B【解题分析】根据指数函数的单调性分析出的范围,根据对数函数的单调性分析出的范围,结合中间值,即可判断出的大小关系.【题目详解】因为在上单调递减,所以,所以,又因为且在上单调递增,所以,所以,又因为在上单调递减,所以,所以,综上可知:,故选:B.【题目点拨】方法点睛:常见的比较大小的方法:(1)作差法:作差与作比较;(2)作商法:作商与作比较(注意正负);(3)函数单调性法:根据函数单调性比较大小;(4)中间值法:取中间值进行大小比较.3、B【解题分析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【题目详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【题目点拨】本题考查不等式的性质的应用,属于基础题.4、D【解题分析】由交集的定义求解即可【题目详解】,由题意,作数轴如图:故,故选:D.5、C【解题分析】由图可以得到周期,然后利用周期公式求,再将特殊点代入即可求得的表达式,结合的范围即可确定的值.【题目详解】由图可知,,则,所以,则.将点代入得,即,解得,因为,所以.答案为C.【题目点拨】已知图像求函数解析式的问题:(1):一般由图像求出周期,然后利用公式求解.(2):一般根据图像的最大值或者最小值即可求得.(3):一般将已知点代入即可求得.6、A【解题分析】由即可判断S的含义.【题目详解】解:由图可知,集合S是集合A与集合B的交集,所以集合S表示:感染未发病者,即无症状感染者,故选:A.7、B【解题分析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【题目详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【题目点拨】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.8、A【解题分析】根据题意可知是周期为的周期函数,以及,,由此即可求出结果.【题目详解】因为和都是定义在上的奇函数,所以,,所以,所以,所以是周期为周期函数,所以因为是定义在上的奇函数,所以,又是定义在上的奇函数,所以,所以,即,所以.故选:A.9、B【解题分析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【题目详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【题目点拨】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.10、D【解题分析】由偶函数定义可确定函数在上的单调性,由单调性可解不等式.【题目详解】由于函数是偶函数,在区间上单调递增,且,所以,且函数在上单调递减.由此画出函数图象,如图所示,由图可知,的解集是.故选:D.【题目点拨】本题考查函数的奇偶性与单调性,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.0②.-2【解题分析】答案:0,12、2【解题分析】有题设得到,利用基本不等式求得最小值.【题目详解】由题知,,则,,则,当且仅当时等号成立,故答案为:213、【解题分析】利用两角差的正切公式可计算出的值.【题目详解】由两角差的正切公式得.故答案为:.【题目点拨】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14、或.【解题分析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.15、(1);(2)5年;(3)17年.【解题分析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年16、【解题分析】结合正弦函数的性质确定参数值.【题目详解】由图可知,最小正周期,所以,所以.故答案为:.【题目点拨】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)2;(3)见解析.【解题分析】(1)将函数写成分段函数,先作出函,再将x轴下方部分翻折到轴上方即可得到函数图象;(2)根据函数的图象,可知在上是减函数,而在上是增函数,利用b且,即可求得的值;(3)构造函数,由函数的图象可得结论【题目详解】(1)如图所示(2)∵f(x)==故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数由0<a<b且f(a)=f(b),得0<a<1<b,且-1=1-,∴+=2.(3)由函数f(x)的图象可知,当0<m<1时,函数f(x)的图象与直线y=m有两个不同的交点,即方程f(x)=m有两个不相等的正根.【题目点拨】本题考查绝对值函数,考查数形结合的数学思想,考查学生的作图能力,正确作图是关键18、(1)(2)证明见解析【解题分析】(1)将问题转化为求即可;(2)根据线面垂直证明线线垂直.【小问1详解】在正方体ABCD-中,易知⊥平面ABD,∴.【小问2详解】证明:在正方体中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴19、(1);(2);(3)7.【解题分析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【题目详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【题目点拨】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用20、【解题分析】先利用同角三角函数关系式分别求出sinα、cosβ,再由两角差余弦函数公式能求出β﹣α的值【题目详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论