




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省正定县第七中学高一上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则a,b,c大小关系为()A. B.C. D.2.设,则()A.13 B.12C.11 D.103.将函数的图象沿轴向右平移个单位后,得到的函数图象关于轴对称,则的值可以是()A. B.C. D.4.在区间上单调递减的函数是()A. B.C. D.5.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(﹣2)=()A.﹣3 B.﹣1C.1 D.36.设全集,集合,,则等于A. B.{4}C.{2,4} D.{2,4,6}7.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定8.设,且,则等于()A.100 B.C. D.9.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.10.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为向量的夹角,且,,则的取值范围是_____.12.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则13.已知,,则________.14.已知,,则的值为_______.15.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.16.在矩形ABCD中,O是对角线的交点,若,则=________.(用表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.18.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.19.已知集合,集合(1)求;(2)设集合,若,求实数的取值范围20.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程21.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【题目详解】,,,又在上单调递增,,,故选:C2、A【解题分析】将代入分段函数解析式即可求解.【题目详解】,故选:A3、C【解题分析】首先求平移后的解析式,再根据函数关于轴对称,当时,,求的值.【题目详解】函数的图象沿轴向右平移个单位后的解析式是,若函数图象关于轴对称,当时,,解得:,当时,.故选:C【题目点拨】本题考查函数图象变换,以及根据函数性质求参数的取值,意在考查基本知识,属于基础题型.4、C【解题分析】依次判断四个选项的单调性即可.【题目详解】A选项:增函数,错误;B选项:增函数,错误;C选项:当时,,为减函数,正确;D选项:增函数,错误.故选:C.5、B【解题分析】因为函数f(x)为奇函数,所以.选B6、C【解题分析】由并集与补集的概念运算【题目详解】故选:C7、D【解题分析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【题目详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D8、C【解题分析】由,得到,再由求解.【题目详解】因为,所以,则,所以,则,解得,故选:C9、D【解题分析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【题目详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D10、B【解题分析】,所以,故选B考点:平面向量的垂直二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【题目详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【题目点拨】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.12、③【解题分析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.13、【解题分析】根据已知条件求得的值,由此求得的值.【题目详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【题目点拨】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.14、-.【解题分析】将和分别平方计算可得.【题目详解】∵,∴,∴,∴,又∵,∴,∴,故答案为:-.【点晴】此题考同脚三角函数基本关系式应用,属于简单题.15、【解题分析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【题目详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.16、【解题分析】根据=,利用向量的线性运算转化即可.【题目详解】在矩形ABCD中,因为O是对角线的交点,所以=,故答案为:.【题目点拨】本题考查平面向量的线性运算,较为容易.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解题分析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.18、(1)证明见解析;(2)【解题分析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【题目详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为19、(1);(2).【解题分析】(1)根据指数函数的性质,结合集合并集的定义进行求解即可;(2)根据(1)的结论,结合集合是否为空集分类讨论进行求解即可.【小问1详解】由,得,所以;【小问2详解】当时:,即,当时:,解得,综上所述,的取值范围为.20、(1)(2)或【解题分析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【题目详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【题目点拨】本题主要考查了曲线轨迹方程的求法,以及直线与圆的位置关系的应用,其中解答中熟记直接法求轨迹的方法,以及合理使用直线与圆的位置关系是解答的关键,着重考查了推理与运算能力,以及转化思想的应用,属于基础题21、(1);(2)【解题分析】(1)函数为二次函数,其对称轴为.由f(x)为偶函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训班开讲介绍
- 电话销售个人工作总结模版
- 第三课时《认识锐角和钝角》教学设计
- 脉管炎的临床护理
- 非性病性梅毒的临床护理
- 采购员试用期工作总结
- 消防安全培训动态
- 浴室消防安全试题及答案
- 幼儿园教师基本功考试试题及答案
- 英语b和计算机考试试题及答案
- 多彩的非洲文化 - 人教版课件
- 2025年年中考物理综合复习(压轴特训100题55大考点)(原卷版+解析)
- -《经济法学》1234形考任务答案-国开2024年秋
- 2025上海房屋租赁合同模板
- T-SCSTA001-2025《四川省好住房评价标准》
- 2025-2030全球及中国可持续飞机能源行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- TCGIA0012017石墨烯材料的术语定义及代号
- 西红门镇生活垃圾转运站及环卫停车场工程报告表
- 2025年信息系统监理师考试题(附答案)
- 农村留守儿童教育支持体系构建研究
- 车场管理考试试题及答案
评论
0/150
提交评论