




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省河源市龙川县隆师中学数学高一上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象如图所示,则函数与在同一直角坐标系中的图象是A. B.C. D.2.与2022°终边相同的角是()A. B.C.222° D.142°3.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.54.函数定义域为()A. B.C. D.5.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.6.已知全集,集合,则()A. B.C. D.7.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.8.已知集合0,,1,,则A. B.1,C.0,1, D.9.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c10.下列函数中,为偶函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数在上单调递减,则___________.12.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.13.不等式的解集是________.14.化简:=____________15.已知,则_____.16.不等式的解集为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断的奇偶性,并求在区间上的值域.18.(1)已知,求的值;(2)计算:.19.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.20.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间21.计算:(1).(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据幂函数的图象和性质,可得a∈(0,1),再由指数函数和对数函数的图象和性质,可得答案【题目详解】由已知中函数y=xa(a∈R)的图象可知:a∈(0,1),故函数y=a﹣x为增函数与y=logax为减函数,故选C【题目点拨】本题考查知识点是幂函数的图象和性质,指数函数和对数函数的图象和性质,难度不大,属于基础题2、C【解题分析】终边相同的角,相差360°的整数倍,据此即可求解.【题目详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.3、A【解题分析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.4、C【解题分析】由二次根式的被开方数非负和对数的真数大于零求解即可【题目详解】由题意得,解得,所以函数的定义域为,故选:C5、B【解题分析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【题目详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【题目点拨】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.6、A【解题分析】首先进行并集运算,然后进行补集运算即可.【题目详解】由题意可得:,则.故选:A.7、C【解题分析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象8、A【解题分析】直接利用交集的运算法则化简求解即可【题目详解】集合,,则,故选A【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.9、D【解题分析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【题目详解】对A,令a=1,b=-2,此时满足a>b,但a2<b对B,令a=1,b=-2,此时满足a>b,但1a>1对C,若c=0,a>b,则ac=bc,故C错;对D,∵a>b∴a-c>b-c,故D正确.故选:D.10、D【解题分析】利用函数的奇偶性的定义逐一判断即可.【题目详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由系数为1解出的值,再由单调性确定结论【题目详解】由题意,解得或,若,则函数为,在上递增,不合题意若,则函数为,满足题意故答案为:12、①②④【解题分析】根据点的坐标的意义结合图形逐个分析判断即可【题目详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④13、【解题分析】由题意,,根据一元二次不等式的解法即可求出结果.【题目详解】由题意,或,故不等式的解集为.故答案为:.【题目点拨】本题主要考查了一元二次不等式的解法,属于基础题.14、【解题分析】利用三角函数的平方关系式,化简求解即可【题目详解】===又,所以,所以=,故填:【题目点拨】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力15、3【解题分析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【题目详解】因,所以.故答案为:3.16、【解题分析】根据对数函数的单调性解不等式即可.【题目详解】由题设,可得:,则,∴不等式解集为.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解题分析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因为,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所以在区间上的值域为.18、(1),(2).【解题分析】(1)把所给的式子进行平方运算,即可求出的值,找到和的关系即可求出的值;(2)化根式为分数指数幂,把对数式的真数用对数的运算性质拆开,再用对数的运算性质求解即可.【题目详解】(1)由得,由得,故.(2)19、(1).(2),的面积.【解题分析】(1)由可求出,再利用展开即可得出答案;(2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可.【题目详解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面积.【题目点拨】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题.20、(1)对称轴为,;,(2)和【解题分析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训班开讲介绍
- 电话销售个人工作总结模版
- 第三课时《认识锐角和钝角》教学设计
- 脉管炎的临床护理
- 非性病性梅毒的临床护理
- 采购员试用期工作总结
- 消防安全培训动态
- 浴室消防安全试题及答案
- 幼儿园教师基本功考试试题及答案
- 英语b和计算机考试试题及答案
- 2025年年中考物理综合复习(压轴特训100题55大考点)(原卷版+解析)
- -《经济法学》1234形考任务答案-国开2024年秋
- 2025上海房屋租赁合同模板
- T-SCSTA001-2025《四川省好住房评价标准》
- 2025-2030全球及中国可持续飞机能源行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- TCGIA0012017石墨烯材料的术语定义及代号
- 西红门镇生活垃圾转运站及环卫停车场工程报告表
- 2025年信息系统监理师考试题(附答案)
- 农村留守儿童教育支持体系构建研究
- 车场管理考试试题及答案
- 钢结构与焊接作业指导书
评论
0/150
提交评论