上海浦东新区2024届高一上数学期末联考试题含解析_第1页
上海浦东新区2024届高一上数学期末联考试题含解析_第2页
上海浦东新区2024届高一上数学期末联考试题含解析_第3页
上海浦东新区2024届高一上数学期末联考试题含解析_第4页
上海浦东新区2024届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海浦东新区2024届高一上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且函数恰有三个不同的零点,则实数的取值范围是A. B.C. D.2.将函数的图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.3.要得到函数的图象,只需将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.5.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.7.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的A.4倍 B.3倍C.倍 D.2倍8.若,则下列不等式成立的是().A. B.C. D.9.函数零点所在的大致区间的A. B.C. D.10.已知集合,,则中元素的个数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,半径为,则扇形的面积为______12.已知圆:,为圆上一点,、、,则的最大值为______.13.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.14.已知是定义在上的奇函数,当时,,则时,__________15.计算_______.16.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求值.18.已知函数(为常数)是奇函数(1)求的值;(2)判断函数在上的单调性,并予以证明19.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.20.已知函数,(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数的图象,求函数在区间上的值域21.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】函数恰有三个不同的零点等价于与有三个交点,再分别画出和的图像,通过观察图像得出a的范围.【题目详解】解:方程所以函数恰有三个不同的零点等价于与有三个交点记,画出函数简图如下画出函数如图中过原点虚线l,平移l要保证图像有三个交点,向上最多平移到l’位置,向下平移一直会有三个交点,所以,即故选A.【题目点拨】本题考查了函数的零点问题,解决函数零点问题常转化为两函数交点问题2、C【解题分析】,所以,所以,所以是一条对称轴故选C3、C【解题分析】化函数解析式为,再由图象平移的概念可得【题目详解】解要得到函数的图象,只需将函数的图象向左平移个单位,即:故选C【题目点拨】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为4、A【解题分析】由图观察出和后代入最高点,利用可得,进而得到解析式【题目详解】解:由图可知:,,,,代入点,得,,,,,,故选.【题目点拨】本题考查了由的部分图象确定其表达式,属基础题.5、A【解题分析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【题目详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.6、A【解题分析】根据题意并结合奇函数的性质即可求解.【题目详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.7、D【解题分析】由题意,求出圆锥的底面面积,侧面面积,即可得到比值【题目详解】圆锥的轴截面是正三角形,设底面半径为r,则它的底面积为πr2;圆锥的侧面积为:2rπ•2r=2πr2;圆锥的侧面积是底面积的2倍故选D【题目点拨】本题是基础题,考查圆锥的特征,底面面积,侧面积的求法,考查计算能力8、B【解题分析】∵a>b>c,∴a﹣c>b﹣c>0,∴故选B9、B【解题分析】函数是单调递增函数,则只需时,函数在区间(a,b)上存在零点.【题目详解】函数,x>0上单调递增,,函数f(x)零点所在的大致区间是;故选B【题目点拨】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若确定零点所在的区间.10、B【解题分析】根据并集的定义进行求解即可.【题目详解】由题意得,,显然中元素的个数是5.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵扇形的圆心角为,半径为,∴扇形的面积故答案为12、53【解题分析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【题目详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【题目点拨】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.13、【解题分析】先求出定点的坐标,再代入幂函数,即可求出解析式.【题目详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【题目点拨】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.14、【解题分析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式15、【解题分析】利用指数的运算法则求解即可.【题目详解】原式.故答案为:.【题目点拨】本题主要考查了指数的运算法则.属于容易题.16、2【解题分析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最大值是4(2)-【解题分析】(1)先由向量数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【题目详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【题目点拨】本题考查平面向量的综合题18、(1)1;(2)函数在上是减函数,证明见详解.【解题分析】(1)利用,化简后可求得的值.(2)利用单调性的定义,令,计算判断出在上函数为减函数.再根据复合函数同增异减,可判断得在上的单调性.【题目详解】(1)∵是奇函数,∴,即,即,解得或(舍去),故的值为1(2)函数在上是减函数证明:由(1)知,设,任取,∴,∵,,,∴,∴在上为减函数,又∵函数在上为增函数,∴函数在上为减函数【题目点拨】本题考查由对数型函数的奇偶性求参数值,以及利用单调性定义证明函数单调性,属综合中档题.19、(1)(2)【解题分析】(1)根据为等腰直角三角形可求解(2)根据三角函数定义分别得到、的坐标,再代入中可求解【小问1详解】由题意可知周期,所以,,为等腰直角三角形,所以.【小问2详解】由(1)可得,所以,,所以,点,都落在曲线()上,所以可得,,,可得,,由,得,(),所以.20、(1);(2)【解题分析】(1)根据正弦函数的周期性和单调性即可得出答案;(2)根据周期变换和平移变换求出函数,再根据余弦函数的性质即可得出答案.【小问1详解】解:由函数,则函数f(x)的最小正周期,令,解得,所以函数f(x)的单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论