上海市宝山区2024届数学高一上期末达标检测试题含解析_第1页
上海市宝山区2024届数学高一上期末达标检测试题含解析_第2页
上海市宝山区2024届数学高一上期末达标检测试题含解析_第3页
上海市宝山区2024届数学高一上期末达标检测试题含解析_第4页
上海市宝山区2024届数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市宝山区2024届数学高一上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则的值等于()A. B.C. D.2.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.23.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米4.命题“任意,都有”的否定为()A.存在,使得B.不存在,使得C.存在,使得D.对任意,都有5.()A. B.1C.0 D.﹣16.若,求()A. B.C. D.7.若:,则成立的一个充分不必要条件是()A. B.C. D.8.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角9.已知函数幂函数,且在其定义域内为单调函数,则实数()A. B.C.或 D.10.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.由直线上的任意一个点向圆引切线,则切线长的最小值为________.12.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________13.已知幂函数f(x)是奇函数且在上是减函数,请写出f(x)的一个表达式________14.已知函数满足下列四个条件中的三个:①函数是奇函数;②函数在区间上单调递增;③;④在y轴右侧函数的图象位于直线上方,写出一个符合要求的函数________________________.15.已知,,试用a、b表示________.16.已知集合,,则集合中子集个数是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围18.已知集合,,若“”是“”的充分不必要条件,求实数a的取值范围.19.若函数,.(1)当时,求函数的最小值;(2)若函数在区间上的最小值是,求实数的值.20.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积21.设关于x二次函数(1)若,解不等式;(2)若不等式在上恒成立,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题可分析得到,由差角公式,将值代入求解即可【题目详解】由题,,故选:B【题目点拨】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题2、A【解题分析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.3、D【解题分析】根据题意,建立水费与用水量的函数关系式,即可求解.【题目详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D4、A【解题分析】根据全称量词命题的否定为特称量词命题,改量词,否结论,即得答案.【题目详解】命题“任意,都有”的否定为“存在,使得”,故选:A5、C【解题分析】直接利用诱导公式以及特殊角的三角函数求解即可.【题目详解】.故选:C.6、A【解题分析】根据,求得,再利用指数幂及对数的运算即可得出答案.【题目详解】解:因为,所以,所以.故选:A.7、C【解题分析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【题目详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.8、C【解题分析】由题知,故,进而得答案.【题目详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C9、A【解题分析】由幂函数的定义可得出关于的等式,求出的值,然后再将的值代入函数解析式进行检验,可得结果.【题目详解】因为函数为幂函数,则,即,解得或.若,函数解析式为,该函数在定义域上不单调,舍去;若,函数解析式,该函数在定义域上为增函数,合乎题意.综上所述,.故选:A.10、A【解题分析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【题目详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用切线和点到圆心的距离关系即可得到结果.【题目详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【题目点拨】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.12、1【解题分析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案.【题目详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故故答案为:1.13、【解题分析】由题意可知幂函数中为负数且为奇数,从而可求出解析式【题目详解】因为幂函数是奇函数且在上是减函数,所以为负数且为奇数,所以f(x)的一个表达式可以是(答案不唯一),故答案为:(答案不唯一)14、【解题分析】满足①②④的一个函数为,根据奇偶性以及单调性,结合反比例函数的性质证明①②④.【题目详解】满足①②④对于①,函数的定义域为关于原点对称,且,即为奇函数;对于②,任取,且因为,所以,即函数在区间上单调递增;对于④,令,当时,,即在y轴右侧函数的图象位于直线上方故答案为:【题目点拨】关键点睛:解决本题的关键在于利用定义证明奇偶性以及单调性.15、【解题分析】根据对数式指数式互化公式,结合对数换底公式、对数的运算性质进行求解即可.【题目详解】因为,所以,因此有:,故答案为:16、4【解题分析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【题目详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【题目点拨】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只需当,即时,在上单调递增,所以,解得,与矛盾,舍去;当,即时,在上单调递减,在上单调递增,所以,解得;当即时,在上单调递减,所以,解得,与矛盾,舍去综上,实数的取值范围是18、【解题分析】根据给定条件可得AB,再借助集合的包含关系列式计算作答.【题目详解】因“”是“”的充分不必要条件,于是得AB,而集合,,因此,或,解得或,即有,所以实数a的取值范围为.19、(1)(2)【解题分析】(1)当时,,当时,函数的值最小,求解即可;(2)由于,分,,三种情况讨论,再结合题意,可得实数的值【小问1详解】解:依题意得若,则又,所以的值域为所以当时,取得最小值为小问2详解】解:∵∴所以当时,,所以,不符合题意当时,,解得当时,,得,不符合题意综上所述,实数的值为.20、(1)或(2)【解题分析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论