甘肃省庆阳六中2024届高一数学第一学期期末达标检测模拟试题含解析_第1页
甘肃省庆阳六中2024届高一数学第一学期期末达标检测模拟试题含解析_第2页
甘肃省庆阳六中2024届高一数学第一学期期末达标检测模拟试题含解析_第3页
甘肃省庆阳六中2024届高一数学第一学期期末达标检测模拟试题含解析_第4页
甘肃省庆阳六中2024届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省庆阳六中2024届高一数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知幂函数的图象过点,则的值为()A. B.C. D.3.若向量,则下列结论正确的是A. B..C. D.4.已知函数且,则实数的取值范围为()A. B.C. D.5.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.6.设,,若,则的最小值为()A. B.6C. D.7.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.8.如果角的终边经过点,则()A. B.C. D.9.设角的终边经过点,那么A. B.C. D.10.下列函数中,以为最小正周期,且在上单调递增的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上没有最值,则的取值范围是______.12.函数的值域是__________.13.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________14.函数的部分图象如图所示.若,且,则_____________15.幂函数为偶函数且在区间上单调递减,则________,________.16.若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若函数为奇函数,求实数的值;(2)判断函数在定义域上的单调性,并用单调性定义加以证明;(3)若函数为奇函数,求满足不等式的实数的取值范围.18.在①两个相邻对称中心的距离为,②两条相邻对称轴的距离为,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解问题:函数的图象过点,且满足__________.当时,,求的值.注:如果选择多个条件分别解答,按第一个解答计分19.甲、乙两地相距1000千米,某货车从甲地匀速行驶到乙地,速度为v千米/小时(不得超过120千米/小时).已知该货车每小时的运输成本m(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的关系是;固定部分y2为81元(1)根据题意可得,货车每小时的运输成本m=________,全程行驶的时间为t=________;(2)求该货车全程的运输总成本与速度v的函数解析式;(3)为了使全程的运输总成本最小,该货车应以多大的速度行驶?20.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)21.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由于,所以由终边相同的定义可得结论【题目详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A2、A【解题分析】待定系数求得幂函数解析式,再求对数运算的结果即可.【题目详解】设幂函数为,由题意得,,∴故选:A【题目点拨】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题.3、C【解题分析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行4、B【解题分析】易知函数为奇函数,且在R上为增函数,则可化为,则即可解得a的范围.【题目详解】函数,定义域为,满足,∴,令,∴,∴为奇函数,,∵函数,在均为增函数,∴在为增函数,∴在为增函数,∵为奇函数,∴在为增函数,∴,解得.故选:B.5、D【解题分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【题目详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.6、C【解题分析】由已知可得,将代数式与相乘,展开后利用基本不等式可求得所求代数式的最小值.【题目详解】,,,由可得,所以,,当且仅当时,等号成立.因此,的最小值为.故选:C.【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、B【解题分析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【题目详解】圆心,半径,圆心到直线的距离则切线长的最小值【题目点拨】本题考查圆的切线长,考查数形结合思想,属于基础题8、D【解题分析】由三角函数的定义可求得的值.【题目详解】由三角函数的定义可得.故选:D.【题目点拨】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.9、D【解题分析】由题意首先求得的值,然后利用诱导公式求解的值即可.【题目详解】由三角函数的定义可知:,则.本题选择D选项.【题目点拨】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.10、D【解题分析】根据最小正周期判断AC,根据单调性排除B,进而得答案.【题目详解】解:对于AC选项,,的最小正周期为,故错误;对于B选项,最小正周期为,在区间上单调递减,故错误;对于D选项,最小正周期为,当时,为单调递增函数,故正确.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【题目详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【题目点拨】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.12、【解题分析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【题目详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:13、【解题分析】几何体为一个圆锥与一个棱柱的组合体,体积为14、##【解题分析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【题目详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.15、(1).或3(2).4【解题分析】根据题意可得:【题目详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.16、【解题分析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【题目详解】由得,即,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)函数在上单调递减,证明见解析(3)【解题分析】(1)利用奇函数的定义可得的值;(2)利用单调性定义证明即可;(3)根据的奇偶性和单调性可得的取值范围.【小问1详解】函数的定义域为,因为为奇函数,所以,所以,所以,所以.【小问2详解】函数在上单调递减.下面用单调性定义证明:任取,且,则因为在上单调递增,且,所以,又,所以,所以函数在上单调递减.【小问3详解】因为为奇函数,所以,由得,即,由(2)可知,函数在上单调递减,所以,即,解得或,所以的取值范围为.18、选①②③,答案相同,均为【解题分析】选①②可以得到最小正周期,从而得到,结合图象过的点,可求出,从而得到,进而得到,接下来用凑角法求出的值;选③,可以直接得到最小正周期,接下来过程与选①②相同.【题目详解】选①②:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;选③:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;19、(1);;(2)(0<v≤120);(3)v=90km/h.【解题分析】(1)根据货车每小时的运输成本等于可变部分加上固定部分即可得出答案,再根据全程行驶的时间等于总里程除以速度即可得解;(2)根据货车全程运输总成本等于货车每小时的运输成本乘以时间即可得出答案;(3)根据函数解析式结合基本不等式即可得解.【题目详解】解:(1);(2)货车全程的运输总成本(0<v≤120)(3)=1800元,当且仅当,即v=90时,全程的运输总成本最小,所以为了使全程的运输总成本最小,该货车应以90km/h的速度行驶.20、(1),(2)13分钟【解题分析】(1)按照题目所给定的坐标系分别写出和的方程即可;(2)根据零点存在定理判断即可.【小问1详解】可设,∵转动的周期为30分钟,∴,∵枢轮的直径为3.4米,∴,∵点P的初始位置为最高点,∴,∴,∵退水壶内水面位于枢轮中心下方1.19米处,∴水面的初始纵坐标为,∵水位以每分钟0.017米速度下降,∴;【小问2详解】P点进入水中,则,即∴作出和的大致图像,显然在内存在一个交点令,∵,,∴P点进入水中所用时间的最小值为13分钟;综上,,,P点进入水中所用时间的最小值为13分钟.21、(1)或;(2)或;【解题分析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论