2024届青海西宁市普通高中高一上数学期末综合测试模拟试题含解析_第1页
2024届青海西宁市普通高中高一上数学期末综合测试模拟试题含解析_第2页
2024届青海西宁市普通高中高一上数学期末综合测试模拟试题含解析_第3页
2024届青海西宁市普通高中高一上数学期末综合测试模拟试题含解析_第4页
2024届青海西宁市普通高中高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届青海西宁市普通高中高一上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义域为的单调递增函数满足:,有,则方程的解的个数为()A.3 B.2C.1 D.02.已知是第三象限角,,则A. B.C. D.3.已知函数,则的零点所在区间为A. B.C. D.4.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆-嫦娥五号返回:舱之所以能达到如此髙的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少还需要“打水漂”的次数为()(参考数据:取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.75.如图,正方形中,为的中点,若,则的值为()A. B.C. D.6.若偶函数在定义域内满足,且当时,;则的零点的个数为()A.1 B.2C.9 D.187.已知,,,则a、b、c的大小顺序为()A. B.C. D.8.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.9.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.10.已知在上的减函数,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.12.若,其中,则的值为______13.若关于的不等式的解集为,则实数__________14.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=115.函数,其中,,的图象如图所示,求的解析式____16.幂函数的图像经过点,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数满足对于任意实数,都有,且当时,,(1)判断的奇偶性并证明;(2)判断的单调性,并求当时,的最大值及最小值;(3)解关于的不等式.18.考虑到高速公路行车安全需要,一般要求高速公路的车速(公里/小时)控制在范围内.已知汽车以公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为升,其中为常数,不同型号汽车值不同,且满足.(1)若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为升,欲使这种型号的汽车每小时的油耗不超过9升,求车速的取值范围;(2)求不同型号汽车行驶100千米的油耗的最小值.19.已知集合,或(1)当时,求;(2)若,且“”是“”的充分不必要条件,求实数a的取值范围20.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,(1)证明:(2)若,求四棱锥的体积21.如图,在四边形中,,,,为等边三角形,是的中点.设,.(1)用,表示,,(2)求与夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据给定条件求出函数的解析式,再将问题转化成求两个函数图象公共点个数作答.【题目详解】因定义域为的单调递增函数满足:,有,则存在唯一正实数使得,且,即,于是得,而函数在上单调递增,且当时,,因此,,方程,于是得方程的解的个数是函数与的图象公共点个数,在同一坐标系内作出函数与的图象如图,观察图象知,函数与的图象有3个公共点,所以方程解的个数为3.故选:A【题目点拨】思路点睛:图象法判断方程的根的个数,常常将方程变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.2、D【解题分析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【题目详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【题目点拨】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题3、B【解题分析】根据函数的零点判定定理可求【题目详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【题目点拨】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题4、C【解题分析】设石片第n次“打水漂”时的速率为vn,再根据题设列不等式求解即可.【题目详解】设石片第n次“打水漂”时的速率为vn,则vn=.由,得,则,所以,故,又,所以至少需要“打水漂”的次数为6.故选:C5、D【解题分析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算6、D【解题分析】由题,的零点的个数即的交点个数,再根据的对称性和周期性画出图象,数形结合分析即可【题目详解】由可知偶函数周期为2,故先画出时,的函数图象,再分别利用偶函数关于轴对称、周期为2画出的函数图象,则的零点个数即为的零点个数,即的交点个数,易得在上有个交点,故在定义域内有18个交点.故选:D7、D【解题分析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小详解】由,故,因为,所以,因为,所以,所以,即故选:D8、D【解题分析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【题目详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D9、C【解题分析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【题目详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C10、B【解题分析】令,,()若,则函数,减函数,由题设知为增函数,需,故此时无解()若,则函数是增函数,则为减函数,需且,可解得综上可得实数的取值范围是故选点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【题目详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【题目点拨】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角12、;【解题分析】因为,所以点睛:三角函数求值三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.13、【解题分析】先由不等式的解得到对应方程的根,再利用韦达定理,结合解得参数a即可.【题目详解】关于的不等式的解集为,则方程的两根为,则,则由,得,即,故.故答案为:.14、-14【解题分析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【题目详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-15、【解题分析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【题目详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【题目点拨】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及16、【解题分析】本题首先可以根据函数是幂函数设函数解析式为,然后带入点即可求出的值,最后得出结果。【题目详解】因为函数是幂函数,所以可设幂函数,带入点可得,解得,故幂函数,即,答案为。【题目点拨】本题考查函数解析式的求法,考查对幂函数的性质的理解,可设幂函数解析式为,考查计算能力,是简单题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数,证明见解析;(2)在上是减函数.最大值为6,最小值为-6;(3)答案不唯一,见解析【解题分析】(1)令,求出,再令,由奇偶性的定义,即可判断;(2)任取,则.由已知得,再由奇函数的定义和已知即可判断单调性,由,得到,,再由单调性即可得到最值;(3)将原不等式转化为,再由单调性,即得,即,再对b讨论,分,,,,共5种情况分别求出它们的解集即可.【题目详解】(1)令,则,即有,再令,得,则,故为奇函数;(2)任取,则.由已知得,则,∴,∴在上是减函数由于,则,,.由在上是减函数,得到当时,的最大值为,最小值为;(3)不等式,即为.即,即有,由于在上是减函数,则,即为,即有,当时,得解集为;当时,即有,①时,,此时解集为,②当时,,此时解集为,当时,即有,①当时,,此时解集为,②当时,,此时解集为【题目点拨】本题考查抽象函数的基本性质和不等式问题,常用赋值法探索抽象函数的性质,本题第三小问利用函数性质将不等式转化为含参的一元二次不等式的求解问题,着重考查分类讨论思想,属难题.18、(1);(2)当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.【解题分析】(1)根据题意,可知当时,求出的值,结合条件得出,再结合,即可得出车速的取值范围;(2)设该汽车行驶100千米的油耗为升,得出关于与的函数关系式,通过换元令,则,得出与的二次函数,再根据二次函数的图象和性质求出的最小值,即可得出不同型号汽车行驶100千米的油耗的最小值.【小问1详解】解:由题意可知,当时,,解得:,由,即,解得:,因为要求高速公路的车速(公里/小时)控制在范围内,即,所以,故汽车每小时的油耗不超过9升,求车速的取值范围.【小问2详解】解:设该汽车行驶100千米的油耗为升,则,令,则,所以,,可得对称轴为,由,可得,当时,即时,则当时,;当,即时,则当时,;综上所述,当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.19、(1)(2)【解题分析】(1)首先得到集合,再根据交集的定义计算可得;(2)首先求出集合的补集,依题意可得是的真子集,即可得到不等式组,解得即可;【小问1详解】解:当时,,或,∴【小问2详解】解:∵或,∴,∵“”是“”的充分不必要条件,∴是的真子集,∵,∴,∴,∴,故实数的取值范围为20、(1)证明见解析;(2)8.【解题分析】(1)由平行四边形的性质及勾股定理可得,再由面面垂直的性质有BC⊥面PCD,根据线面垂直的性质即可证结论.(2)取CD的中点E,连接PE,易得,由面面垂直的性质有PE⊥底面ABCD,即PE是四棱锥的高,应用棱锥的体积公式求体积即可.【小问1详解】在平行四边形ABCD中因为,即,所以因为面PCD⊥面ABCD,且面PCD面ABCD=CD,面PCD,所以BC⊥面PCD,又PD平面PCD,所以【小问2详解】如图,取CD的中点E,连接PE,因为,所以,又面PCD⊥面ABCD,面PCD面ABCD=CD,面PCD,所以PE⊥底面ABCD因为,,则,故21、(1),;(2).【解题分析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系;(2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论