福建省莆田市第一中学2024届高一数学第一学期期末检测试题含解析_第1页
福建省莆田市第一中学2024届高一数学第一学期期末检测试题含解析_第2页
福建省莆田市第一中学2024届高一数学第一学期期末检测试题含解析_第3页
福建省莆田市第一中学2024届高一数学第一学期期末检测试题含解析_第4页
福建省莆田市第一中学2024届高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田市第一中学2024届高一数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.2.已知函数的定义域为,集合,若中的最小元素为2,则实数的取值范围是:A. B.C. D.3.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]4.已知角满足,则A B.C. D.5.若,,则()A. B.C. D.6.函数的零点个数为()A. B.C. D.7.已知幂函数的图象过(4,2)点,则A. B.C. D.8.已知函数满足,则()A. B.C. D.9.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π10.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______12.过点且在轴,轴上截距相等的直线的方程为___________.13.若函数,则函数的值域为___________.14.已知,若是的充分不必要条件,则的取值范围为______15.若,则a的取值范围是___________16.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)当时,求该函数的值域;(2)求不等式的解集;(3)若存在,使得不等式成立,求的取值范围18.如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,中点(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积19.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.20.如图所示,四棱锥的底面是边长为1的菱形,,E是CD中点,PA底面ABCD,(I)证明:平面PBE平面PAB;(II)求二面角A—BE—P和的大小21.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由已知可作出函数的大致图象,结合图象可得到答案.【题目详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【题目点拨】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.2、C【解题分析】本题首先可以求出集合以及集合中所包含的元素,然后通过交集的相关性质以及中的最小元素为2即可列出不等式组,最后求出实数的取值范围【题目详解】函数,,或者,所以集合,,,,所以集合,因为中的最小元素为2,所以,解得,故选C【题目点拨】本题考查了集合的相关性质,主要考查了交集的相关性质、函数的定义域、带绝对值的不等式的求法,考查了推理能力与计算能力,考查了化归与转化思想,提升了学生的逻辑思维,是中档题3、B【解题分析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【题目详解】因为,,所以.故选:B.【题目点拨】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.4、B【解题分析】∵∴,∴,两边平方整理得,∴.选B5、C【解题分析】由题可得,从而可求出,即得.【题目详解】∵所以,又因为,,所以,即,所以,又因为,所以,故选:C6、B【解题分析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.7、D【解题分析】设函数式为,代入点(4,2)得考点:幂函数8、B【解题分析】根据二次函数的对称轴、开口方向确定正确选项.【题目详解】依题意可知,二次函数的开口向下,对称轴,,在上递减,所以,即.故选:B9、D【解题分析】由正弦函数的性质即可求得的最小值和最小正周期【题目详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【题目点拨】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题10、A【解题分析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【题目详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为12、或【解题分析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【题目详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【题目点拨】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况13、【解题分析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【题目详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.14、【解题分析】根据不等式的解法求出的等价条件,结合充分不必要条件的定义建立不等式关系即可【题目详解】由得得或,由得或,得或,若是的充分不必要条件,则即得,又,则,即实数的取值范围是,故填:【题目点拨】本题主要考查充分条件和必要条件的应用,求出不等式的等价条件结合充分条件和必要条件的定义进行转化是解决本题的关键,为基础题15、【解题分析】先通过的大小确定的单调性,再利用单调性解不等式即可【题目详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【题目点拨】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件16、【解题分析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【题目详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或;(3)【解题分析】(1)令,函数化为,结合二次函数的图象与性质,即可求解;(2)由题意得到,令,得到,求得不等式的解集,进而求得不等式的解集,得到答案;(3)令,转化为存在使得成立,结合函数的单调性,求得函数最小值,即可求解.【题目详解】(1)令,因为,则,函数化为,,所以在上单调递减,在上单调递增,所以当时,取到最小值为,当时,取到最大值为5,故当时,函数的值域为(2)由题意,不等式,即,令,则,即,解得或,当时,即,解得;当时,即,解得,故不等式的解集为或(3)由于存在使得不等式成立,令,,则,即存在使得成立,所以存在使得成立因为函数在上单调递增,也在上单调递增,所以函数在上单调递增,它的最小值为0,所以,所以的取值范围是18、(1)见解析;(2)见解析;(3).【解题分析】(Ⅰ)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(Ⅱ)证明OC⊥平面VAB,即可证明平面MOC⊥平面VAB;(Ⅲ)利用等体积法求三棱锥A-MOC的体积即可试题解析:(Ⅰ)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(Ⅱ)证明:∵AC=BC,O为AB的中点,∴OC⊥AB,又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(Ⅲ)在等腰直角三角形中,,所以.所以等边三角形的面积.又因为平面,所以三棱锥的体积等于.又因为三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积为.考点:平面与平面垂直的判定;直线与平面平行的判定;用向量证明平行19、(1);(2)【解题分析】(1)根据四棱锥的体积得PA=,进而得正视图的面积;(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD,S△PCD,S△PBC求和即可.试题解析:(1)如图所示四棱锥P-ABCD的高为PA,底面积为S=·CD=×1=∴四棱锥P-ABCD的体积V四棱锥P-ABCD=S·PA=×·PA=,∴PA=∴正视图的面积为S=×2×=.(2)如图所示,过A作AE∥CD交BC于E,连接PE.根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1,且BC⊥AE,AB=又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,∴PE2=PA2+AE2=3.∴PE=.∴四棱锥P-ABCD的侧面积为S=S△PAB+S△PAD+S△PCD+S△PBC=··+··1+·1·+·2·=.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.20、(I)同解析(II)二面角的大小为【解题分析】解:解法一(I)如图所示,连结由是菱形且知,是等边三角形.因为E是CD的中点,所以又所以又因为PA平面ABCD,平面ABCD,所以而因此平面PAB.又平面PBE,所以平面PBE平面PAB.(II)由(I)知,平面PAB,平面PAB,所以又所以是二面角的平面角在中,故二面角的大小为解法二:如图所示,以A为原点,建立空间直角坐标系则相关各点的坐标分别是:(I)因为平面PAB的一个法向量是所以和共线.从而平面PAB.又因为平面PBE,所以平面PBE平面PAB.(II)易知设是平面PBE的一个法向量,则由得所以故可取而平面ABE的一个法向量是于是,故二面角的大小为21、(1)证明见解析;(2).【解题分析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论