版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省新余第四中学、上高第二中学2024届高一数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.72.直线的倾斜角为A. B.C. D.3.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,4.已知,,且,则的最小值为()A. B.C.2 D.15.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.使得成立的一个充分不必要条件是()A. B.C. D.7.已知方程的两根分别为、,且、,则A. B.或C.或 D.8.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.9.若,则是第()象限角A.一 B.二C.三 D.四10.已知函数为偶函数,则A.2 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,,则___________.12.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).13.已知,函数在上单调递增,则的取值范围是__14.已知函数,则当_______时,函数取得最小值为_________.15.=______16.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,其中(1)若是的充分条件,求实数的取值范围;(2)是否存在,使得是的必要条件?若存在,求出的值;若不存在,请说明理由18.年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.已知某口罩的固定成本为万元,每生产万箱,需另投入成本万元,为年产量单位:万箱;已知通过市场分析,如若每万箱售价万元时,该厂年内生产的商品能全部售完.利润销售收入总成本(1)求年利润与万元关于年产量万箱的函数关系式;(2)求年产量为多少万箱时,该口罩生产厂家所获得年利润最大19.在中,,且与的夹角为,.(1)求的值;(2)若,,求的值.20.已知.(1)求的值;(2)若,求的值.21.(1)求函数的单调递增区间;(2)求函数的单调递减区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C2、B【解题分析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B3、B【解题分析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【题目详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【题目点拨】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.4、A【解题分析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【题目详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【题目点拨】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.5、C【解题分析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【题目详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.6、C【解题分析】由不等式、正弦函数、指数函数、对数函数的性质,结合充分、必要性的定义判断选项条件与已知条件的关系.【题目详解】A:不一定有不成立,而有成立,故为必要不充分条件;B:不一定成立,而也不一定有,故为既不充分也不必要条件;C:必有成立,当不一定有成立,故为充分不必要条件;D:必有成立,同时必有,故为充要条件.故选:C.7、D【解题分析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【题目详解】由韦达定理可知:,又,,本题正确选项:【题目点拨】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.8、B【解题分析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【题目点拨】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.9、C【解题分析】由终边位置可得结果.【题目详解】,终边落在第三象限,为第三象限角.故选:C.10、A【解题分析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【题目详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【题目点拨】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据并集的定义可得答案.【题目详解】,,.故答案为:.12、①②【解题分析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.13、【解题分析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题14、①.##②.【解题分析】根据求出的范围,根据余弦函数的图像性质即可求其最小值.【题目详解】∵,∴,∴当,即时,取得最小值为,∴当时,最小值为.故答案为:;-3.15、【解题分析】由题意结合指数的运算法则和对数的运算法则整理计算即可求得最终结果.【题目详解】原式=3+-2=.故答案为点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题16、单调递增【解题分析】求出函数单调递增区间,再判断作答.【题目详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在,理由见解析【解题分析】(1)解不等式,由充分条件定义得出实数的取值范围;(2)由是的必要条件得出不等关系,结合作出判断.【小问1详解】由得,故有由得,即若p是q的充分条件,则成立,即得.【小问2详解】因为,所以或若是q的必要条件,则成立,则或,显然这两个不等式均与矛盾,故不存在满足条件的m18、(1)(2)万箱【解题分析】(1)分,两种情况,结合利润销售收入总成本公式,即可求解(2)根据已知条件,结合二次函数的性质,以及基本不等式,分类讨论求得最大值后比较可得【小问1详解】当时,,当时,,故关于的函数解析式为小问2详解】当时,,故当时,取得最大值,当时,,当且仅当,即时,取得最大值,综上所述,当时,取得最大值,故年产量为万箱时,该口罩生产厂家所获得年利润最大19、(1);(2).【解题分析】(1)选取向量为基底,根据平面向量基本定理得,又,然后根据向量的数量积的运算量可得结果;(2)结合向量的线性运算可得,然后与对照后可得【题目详解】选取向量为基底(1)由已知得,,∴(2)由(1)得,又,∴【题目点拨】求向量数量积的方法(1)根据数量积的定义求解,解题时需要选择平面的基底,将向量统一用同一基底表示,然后根据数量积的运算量求解(2)建立平面直角坐标系,将向量用坐标表示,将数量积的问题转化为数的运算的问题求解20、(1);(2).【解题分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年成都农业科技职业学院单招职业技能测试必刷测试卷带答案解析
- 2026年巴中职业技术学院单招职业倾向性测试题库带答案解析
- 2026年德阳科贸职业学院单招职业适应性测试题库及答案解析(夺冠系列)
- 2026年中山火炬职业技术学院单招职业适应性测试必刷测试卷及答案解析(夺冠系列)
- 2026年天津职业大学单招职业技能考试题库附答案解析
- 2026年宝鸡职业技术学院单招职业倾向性考试必刷测试卷带答案解析
- 2026年平顶山文化艺术职业学院单招职业技能考试题库及答案解析(夺冠系列)
- 2026年宁波幼儿师范高等专科学校单招职业适应性测试题库附答案解析
- 2026年安徽卫生健康职业学院单招职业适应性测试题库及答案解析(名师系列)
- 2025内蒙古呼和浩特市城市燃气热力集团有限公司招聘后调整部分岗位招聘人数笔试历年参考题库附带答案详解
- 2025年中学生守则及中学生日常行为规范
- Unit4Helpinginthemunity(单元测试)-人教PEP版英语四年级上册原卷
- 2025上半年国内影视剧市场分析报告-MoonFox月狐数据
- 2025年北京京北职业技术学院单招笔试英语试题库含答案解析(5套100道合辑-单选题)
- 2025年山东省股权转让合同范本
- 肝硬化患者死亡病例讨论
- 单侧双通道内镜技术课件
- 手术室护理质量控制指标
- 需求管理规范
- 试验检测技术管理制度
- 设备应急处置管理制度
评论
0/150
提交评论