




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西新建二中2024届数学高一上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个函数中,以π为最小正周期,且在区间上单调递减的是()A. B.C. D.2.函数的图象是()A. B.C. D.3.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1254.函数图像大致为()A. B.C. D.5.已知函数则函数值域是()A. B.C. D.6.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.58.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.9.若集合,则A. B.C. D.10.下列四组函数中,定义域相同的一组是()A.和 B.和C.和 D.和二、填空题:本大题共6小题,每小题5分,共30分。11.圆:与圆:的公切线条数为____________.12.=_______.13.已知函数,若,则的取值范围是__________14.已知函数若互不相等,且,则的取值范围是15.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.16.已知函数,则=_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断的奇偶性;(2)判断在上的单调性,并用定义证明;(3)若关于x的方程在R上有四个不同的根,求实数t的取值范围.18.计算:(1);(2)已知,求的值19.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式20.已知函数(,,),其部分图像如图所示.(1)求函数的解析式;(2)若,且,求的值.21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断【题目详解】对于A,最小正周期为2π,在区间上单调递减,不合题意;对于B,最小正周期为π,在区间上单调递减,符合题意;对于C,最小正周期为2π,在区间上单调递减,不合题意;对于D,最小正周期为π,在区间上单调递增,不合题意;故选:B.2、C【解题分析】由已知可得,从而可得函数图象【题目详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C3、D【解题分析】根据求得,由此求得的值.【题目详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D4、B【解题分析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【题目详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B5、B【解题分析】结合分段函数的单调性来求得的值域.【题目详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B6、A【解题分析】由菱形和平行四边形的定义可判断.【题目详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.7、A【解题分析】先由已知条件求出,然后利用公式求解即可【题目详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A8、C【解题分析】根据所给关系图(Venn图),可知是求,由此可求得答案.【题目详解】根据题意可知,阴影部分表示的是,故,故选:C.9、D【解题分析】详解】集合,所以.故选D.10、C【解题分析】根据根式、分式、对数的性质求各函数的定义域即可.【题目详解】A:定义域为,定义域为,不合题设;B:定义域为,定义域为,不合题设;C:、定义域均为,符合题设;D:定义域为,定义域为,不合题设;故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】将两圆的公切线条数问题转化为圆与圆的位置关系,然后由两圆心之间的距离与两半径之间的关系判断即可.【题目详解】圆:,圆心,半径;圆:,圆心,半径.因为,所以两圆外切,所以两圆的公切线条数为3.故答案为:312、##【解题分析】利用对数的运算法则进行求解.【题目详解】.故答案为:.13、【解题分析】画出函数图象,可得,,再根据基本不等式可求出.【题目详解】画出的函数图象如图,不妨设,因为,则由图可得,,可得,即,又,当且仅当取等号,因为,所以等号不成立,所以解得,即的取值范围是.故答案为:.14、(10,12)【解题分析】不妨设a<b<c,作出f(x)的图象,如图所示:由图象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即−lga=lgb,∴lgab=0,则ab=1,∴abc=c,∴abc的取值范围是(10,12),15、【解题分析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【题目详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.16、【解题分析】按照解析式直接计算即可.【题目详解】.故答案为:-3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是偶函数(2)在上单调递增,证明见解析(3)【解题分析】(1)利用函数奇偶性的定义,判断的关系即可得出结论;(2)任取,利用作差法整理即可得出结论;(3)由整理得,易得的最小值为,令,设,则原方程有4个不同的根等价于在上有2个不同的零点,从而可得出答案.【小问1详解】解:的定义域为R,∵,∴,∴是偶函数;【小问2详解】解:在上单调递增,证明如下:任取,则,∵,∴,另一方面,∴,∴,即,∴在上单调递增;【小问3详解】由整理得,由(1)(2)可知在上单调递减,在上单调递增,最小值为,令,则当时,每个a的值对应两个不同的x值,设,原方程有4个不同的根等价于在上有2个不同的零点,∴解得,即t的取值范围是.18、(1)20;(2)【解题分析】(1)利用指对数的运算化简(2)利用三角函数诱导公式,以及弦化切的运算【题目详解】(1)对原式进行计算如下:(2)对原式进行化简如下:将代入上式得:原式19、(1);(2)奇函数,理由见解析;(3).【解题分析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【题目详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.20、(Ⅰ);(Ⅱ).【解题分析】【试题分析】(1)根据图像的最高点求得,根据函数图像的零点和最小值位置可知函数的四分之一周期为,由此求得,代入函数上一个点,可求得的值.(2)利用同角三角函数关系和二倍角公式,求得的值,代入所求并计算得结果.【试题解析】(Ⅰ)由图可知,图像过点(Ⅱ),且21、(1);(2).【解题分析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肾内科健康科普护理
- 于漪:穿行于基础教育森林的教育家
- 幼儿园活动设计
- 感恩励志教育班会
- 加强法律法规与警示教育实施路径
- 2025深圳市房屋租赁合同书
- 2025物业管理委托合同2
- 2025届四川省成都市高中毕业班第三次诊断性检测历史试题(含答案)
- 2025石油管道视频监控系统合同
- 2025年度租赁合同模板
- 电镀线哈氏片判定标准
- 山东青岛平度市人社局招考聘用劳务派遣制就业人才综合柜员11人冲刺卷(3套)答案详解㈠
- 《跨境电子商务》教案
- 阿里腿部力量三板斧完整课件
- 废品入库单模板
- 2023年版-肿瘤内科临床路径
- 婚育情况登记表
- word精美小升初简历欧式模板
- 复旦大学附属眼耳鼻喉医院耳鼻喉进修汇报
- 岩芯鉴定手册
- 快速排序算法高校试讲PPT
评论
0/150
提交评论