2024届甘肃省天水市第二中学高一上数学期末综合测试模拟试题含解析_第1页
2024届甘肃省天水市第二中学高一上数学期末综合测试模拟试题含解析_第2页
2024届甘肃省天水市第二中学高一上数学期末综合测试模拟试题含解析_第3页
2024届甘肃省天水市第二中学高一上数学期末综合测试模拟试题含解析_第4页
2024届甘肃省天水市第二中学高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省天水市第二中学高一上数学期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}2.若,则()A. B.-3C. D.33.已知函数,,的零点依次为,则以下排列正确的是()A. B.C. D.4.已知三棱锥D-ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则该三棱锥的外接球的表面积为()A.π B.6πC.5π D.8π5.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.6.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=8,EF=5,则AB与CD所成角的度数为A.30° B.45°C.60° D.90°8.下列各组函数与的图象相同的是()A. B.C. D.9.设,,则A. B.C. D.10.将函数图象向左平移个单位,所得函数图象的一个对称中心是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,三点共线,则实数的值是__________12.直线3x+2y+5=0在x轴上的截距为_____.13.设函数则的值为________14.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)15.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________16.设函数f(x)=-x+2,则满足f(x-1)+f(2x)>0的x的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.18.有一圆与直线相切于点,且经过点,求此圆的方程19.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式20.某运营商为满足用户手机上网的需求,推出甲、乙两种流量包月套餐,两种套餐应付的费用(单位:元)和使用的上网流量(单位:GB)之间的关系如图所示,其中AB,DE都与横轴平行,BC与EF相互平行(1)分别求套餐甲、乙的费用(元)与上网流量x(GB)的函数关系式f(x)和g(x);(2)根据题中信息,用户怎样选择流量包月套餐,能使自己应付的费用更少?21.已知函数,若同时满足以下条件:①在D上单调递减或单调递增;②存在区间,使在上的值域是,那么称为闭函数(1)求闭函数符合条件②的区间;(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;(3)若是闭函数,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据并集定义求解即可.【题目详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:A∪B={1,2,3,4},选项A正确,选项BCD错误.故选:A.2、B【解题分析】利用同角三角函数关系式中的商关系进行求解即可.【题目详解】由,故选:B3、B【解题分析】在同一直角坐标系中画出,,与的图像,数形结合即可得解【题目详解】函数,,的零点依次为,在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足故选:B.【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4、B【解题分析】由题意结合平面几何、线面垂直的判定与性质可得BC⊥BD,AD⊥AC,再由平面几何的知识即可得该几何体外接球的球心及半径,即可得解.【题目详解】AB=BC=1,AD=2,BD=,AC=,∴,,∴DA⊥AB,AB⊥BC,由BC⊥AD可得BC⊥平面DAB,DA⊥平面ABC,∴BC⊥BD,AD⊥AC,∴CD=,由直角三角形的性质可知,线段CD的中点O到点A,B,C,D的距离均为,∴该三棱锥外接球的半径为,故三棱锥的外接球的表面积为4π=6π.故选:B.【题目点拨】本题考查了三棱锥几何特征的应用及其外接球表面积的求解,考查了运算求解能力与空间思维能力,属于中档题.5、C【解题分析】根据给定图象求出函数的解析式,再平移,代入计算作答.【题目详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C6、A【解题分析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【题目详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【题目点拨】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.7、D【解题分析】取BC的中点P,连接PE,PF,则∠FPE(或补角)是AB与CD所成的角,利用勾股定理可求该角为直角.【题目详解】如图,取BC的中点P,连接PE,PF,则PF//CD,∠FPE(或补角)是AB与CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故选:D.【题目点拨】本题考查异面直线所成的角,此类问题一般需要通过平移构建平面角,再利用解三角形的方法求解.8、B【解题分析】根据相等函数的定义即可得出结果.【题目详解】若函数与的图象相同则与表示同一个函数,则与的定义域和解析式相同.A:的定义域为R,的定义域为,故排除A;B:,与的定义域、解析式相同,故B正确;C:的定义域为R,的定义域为,故排除C;D:与的解析式不相同,故排除D.故选:B9、D【解题分析】利用对数运算法则即可得出【题目详解】,,,,则.故选D.【题目点拨】本题考查了对数的运算法则,考查了计算能力,属于基础题10、D【解题分析】先由函数平移得解析式,再令,结合选项即可得解.【题目详解】将函数图象向左平移个单位,可得.令,解得.当时,有对称中心.故选D.【题目点拨】本题主要考查了函数的图像平移及正弦型三角函数的对称中心的求解,考查了学生的运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】,,三点共线,,即,解得,故答案为.12、【解题分析】直接令,即可求出【题目详解】解:对直线令,得可得直线在轴上截距是,故答案:【题目点拨】本题主要考查截距的定义,需要熟练掌握,属于基础题13、【解题分析】直接利用分段函数解析式,先求出的值,从而可得的值.【题目详解】因为函数,所以,则,故答案为.【题目点拨】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.14、##【解题分析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【题目详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.15、①③④【解题分析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【题目详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④16、【解题分析】由函数的解析式可得,据此解不等式即可得答案【题目详解】解:根据题意,函数,则,若,即,解可得:,即的取值范围为;故答案为.【题目点拨】本题考查函数的单调性的应用,涉及不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】(1)因为全集,,所以(2)因为,且.所以实数的取值范围是(3)因为,且,所以,所以可得18、x2+y2-10x-9y+39=0【解题分析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【题目详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【题目点拨】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等19、(1)(2)答案不唯一,具体见解析【解题分析】(1)利用参变量分离法可求得实数的取值范围;(2)分、、、四种情况讨论,结合二次不等式的解法可求得原不等式的解集.【小问1详解】由题意得,当时,在上恒成立,即当时,在上恒成立,不等式可变为,令,,则,故,解得【小问2详解】当时,解不等式,即当时,解不等式,不等式可变为,若时,不等式可变为,可得;若时,不等式可变为,当时,,可得或;当时,,即,可得且;当时,,可得或综上:当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是20、(1)f(x)=30, (2)答案见解析【解题分析】(1)利用函数的图像结合分段函数的性质求出解析式;(2)由f(x)=g(x),得x=30,结合图像选择合适的套餐.【小问1详解】对于套餐甲:当0≤x≤20时,f(x)=30,当x>20时,设f(x)=kx+b,可知函数图象经过点(20,30),所以20k+b=3050k+b=120,解得k=3b=-30故f(x)=对于套餐乙:当0≤x≤50时,g(x)=60,当x>50时,根据题意,可设g(x)=3x+d,将(50,60)代入可得d=-90故g(x)=【小问2详解】由f(x)=g(x),可得3x-30=60,解得x=30由函数图象可知:若用户使用的流量x∈[0,30若用户使用的流量x=30时,选择两种套餐均可;若用户使用的流量x∈(30,+∞21、(1),;(2)见解析;(3)【解题分析】(1)由在R上单减,列出方程组,即可求的值;(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围【题目详解】解:(1)∵在R上单减,所以区间[a,b]满足,解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则,即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论