版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾同盛实验中学2024届高一上数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切2.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.已知幂函数的图象过,则下列求解正确的是()A. B.C. D.6.函数的定义域是()A. B.C. D.7.若,且x为第四象限的角,则tanx的值等于A. B.-C. D.-8.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p39.在同一直角坐标系中,函数的图像可能是()A. B.C. D.10.已知,且,则的最小值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为锐角,,,则__________12.已知,,则___________.13.已知函数,则使函数有零点的实数的取值范围是____________14.的解集为_____________________________________15.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;对于集合,,若这两个集合构成“鲸吞”,则的取值为____________16.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由18.已知函数是奇函数,是偶函数(1)求的值;(2)设,若对任意恒成立,求实数a的取值范围19.已知函数,.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围;(3)是否存在实数,使得函数最大值为0,若存在,求出的值,若不存在,说明理由.20.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象21.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离2、B【解题分析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同3、B【解题分析】根据充分条件、必要条件的定义判断即可;【题目详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B4、C【解题分析】利用空间位置关系的判断及性质定理进行判断或举反例判断【题目详解】对于A,若n⊂平面α,显然结论错误,故A错误;对于B,若m⊂α,n⊂β,α∥β,则m∥n或m,n异面,故B错误;对于C,若m⊥n,m⊥α,n⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C正确;对于D,若α⊥β,m⊂α,n⊂β,则m,n位置关系不能确定,故D错误故选C【题目点拨】本题考查了空间线面位置关系的性质与判断,属于中档题5、A【解题分析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【题目详解】∵幂函数y=xα的图象过点(2,),∴2α,解得α,故f(x),即,故选A【题目点拨】本题考查了幂函数的定义,是一道基础题6、A【解题分析】利用对数函数的真数大于零,即可求解.【题目详解】由函数,则,解得,所以函数的定义域为.故选:A【题目点拨】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.7、D【解题分析】∵x为第四象限的角,,于是,故选D.考点:商数关系8、A【解题分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【题目详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.9、D【解题分析】通过分析幂函数和对数函数的特征可得解.【题目详解】函数,与,答案A没有幂函数图像,答案B.中,中,不符合,答案C中,中,不符合,答案D中,中,符合,故选D.【题目点拨】本题主要考查了幂函数和对数函数的图像特征,属于基础题.10、C【解题分析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【题目详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【题目点拨】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【题目详解】,都是锐角,,又,,,,则故答案为:.12、【解题分析】根据余弦值及角的范围,应用同角的平方关系求.【题目详解】由,,则.故答案为:.13、【解题分析】令,进而作出的图象,然后通过数形结合求得答案.【题目详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.14、【解题分析】由题得,解不等式得不等式的解集.【题目详解】由题得,所以.所以不等式的解集为.故答案为【题目点拨】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.15、0【解题分析】根据题中定义,结合子集的定义进行求解即可.【题目详解】当时,,显然,符合题意;当时,显然集合中元素是两个互为相反数的实数,而集合中的两个元素不互为相反数,所以集合、之间不存在子集关系,不符合题意,故答案为:16、①.55②.8【解题分析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【题目详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;8三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)存在,.【解题分析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【题目详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,当且仅当,即,解得,所以.③当时,图象开口向上,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,,即,解得,所以.综上,存在实数,使函数于在区间内有且只有一个点.【题目点拨】关键点睛:本题主要考查了求一元二次函数的值域问题,以及函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数图象的交点个数问题,结合函数的性质求解是解答的关键,着重考查转化思想,以及推理与运算能力.18、(1)(2)【解题分析】(1)利用奇函数的定义可求得实数的值,利用偶函数的定义可求得实数的值,即可求得的值;(2)分析可知函数在上为增函数,可求得,根据已知条件得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:由于为奇函数,且定义域为,则,因为,所以,,所以,恒成立,所以,,即.由于,,是偶函数,,则,所以,,所以,,因此,.【小问2详解】解:,,因为函数在上为增函数,函数在上为减函数,所以,函数在区间上是增函数,当时,,所以,,由题意得,解之得,因此,实数的取值范围是.19、(1)[0,2];(2)(-∞,);(3)答案见解析.【解题分析】(1)由h(x)=-2(log3x-1)2+2,根据log3x∈[0,2],即可得值域;(2)由,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],得(3-4t)(3-t)>k对一切t∈[0,2]恒成立,利用二次函数求函数的最小值即可;(3)由,假设最大值为0,因为,则有,求解即可.试题解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因为x∈[1,9],所以log3x∈[0,2],故函数h(x)的值域为[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k对一切t∈[0,2]恒成立,令,其对称轴为,所以当时,的最小值为,综上,实数k的取值范围为(-∞,)..(3)假设存在实数,使得函数的最大值为0,由.因为,则有,解得,所以不存在实数,使得函数的最大值为0.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1),它的对称中心为,(2)答案见解析.【解题分析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x0010021、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东肇庆市鼎湖区总工会招聘社会化工会工作者笔试(公共基础知识)综合能力测试题附答案
- 2025年度武汉市市直机关公开遴选公务员111人备考题库附答案
- 2025广东广州花都城投贸易有限公司第二次招聘项目用工人员取消招聘考试题库附答案
- 2025年度成都市教育局所属事业单位公开招聘15名高层次人才考试参考题库附答案
- 2026云南大理州弥渡县人民医院招聘公益性岗位人员3人笔试参考题库及答案解析
- 2025年云南省大数据有限公司第二批招聘(30人)考试模拟卷附答案
- 2025年六安市叶集区人民医院招聘2人(公共基础知识)综合能力测试题附答案
- 2025广东中山市阜沙中学招聘英语非编教师1人(公共基础知识)综合能力测试题附答案
- 2026云南中国人民人寿保险股份有限公司临沧市中心支公司招聘30人笔试备考题库及答案解析
- 2025年广东省人民医院南海医院招聘事业单位聘用制(编制)工作人员1人(第二批)笔试参考题库及答案解析
- 河南省开封市2026届高三年级第一次质量检测历史试题卷+答案
- 员工通勤安全培训课件
- (自2026年1月1日起施行)《增值税法实施条例》的重要变化解读
- 2025年游戏陪玩分成协议
- 全国秸秆综合利用重点县秸秆还田监测工作方案
- 2026年内蒙古化工职业学院单招职业适应性考试参考题库及答案解析
- 国家事业单位招聘2024国家水利部小浪底水利枢纽管理中心招聘事业单位人员拟聘用人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 核生化应急救援中心火灾预案
- 25数五上数学人教版期末押题卷5套
- 2026年辽宁金融职业学院单招职业适应性测试题库及参考答案详解
- 2026年教师资格之中学综合素质考试题库500道及完整答案【名师系列】
评论
0/150
提交评论