2022年四川省广元市剑阁县开封中学高一数学文期末试卷含解析_第1页
2022年四川省广元市剑阁县开封中学高一数学文期末试卷含解析_第2页
2022年四川省广元市剑阁县开封中学高一数学文期末试卷含解析_第3页
2022年四川省广元市剑阁县开封中学高一数学文期末试卷含解析_第4页
2022年四川省广元市剑阁县开封中学高一数学文期末试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省广元市剑阁县开封中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则的最小值为(

)A.2 B. C.4 D.参考答案:C【分析】根据基本不等式求最值.【详解】,当且仅当时取等号,故的最小值为,选C.【点睛】本题考查根据基本不等式求最值,考查基本分析求解能力,属基础题.2.已知全集,集合,集合,则=(

)A.

B.

C.

D.

参考答案:A【解析】∵集合,,∴全集,∴,故选A.3.已知α是三角形的一个内角且sinα+cosα=,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形参考答案:C【考点】三角形的形状判断.【分析】α是三角形的一个内角,利用sinα+cosα=∈(0,1),可知此三角形是钝角三角形.【解答】解:∵α是三角形的一个内角,∴sinα>0,又sinα+cosα=,∴(sinα+cosα)2=1+2sinα?cosα=,∴2sinα?cosα=﹣<0,sinα>0,∴cosα<0,∴α为钝角,∴此三角形是钝角三角形.故选C.4.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为(

(A)0.5小时

(B)1小时

(C)1.5小时

(D)2小时参考答案:B略5.已知函数,则的值为(

)A.1

B.2

C.3

D.4参考答案:D由函数,可得,所以,故选D.

6.若x为三角形中的最小内角,则函数y=sinx+cosx的值域是()A.[,] B.(0,] C.(1,] D.(,]参考答案:C【考点】正弦函数的定义域和值域.【专题】计算题.【分析】由x为三角形中的最小内角,可得0<x≤而y=sinx+cosx=,结合已知所求的x的范围可求y的范围.【解答】解:因为x为三角形中的最小内角,所以0<x≤y=sinx+cosx=∴故选C【点评】本题主要考查了辅助角公式的应用,正弦函数的部分图象的性质,属于基础试题.7.已知,则(

)A.

B.

C.

D.参考答案:A8.函数的最小正周期等于

)A.

B.2

C.

D.参考答案:A略9.已知扇形的弧长为6,圆心角弧度数为3,则其面积为()A.3 B.6 C.9 D.12参考答案:B【考点】扇形面积公式.【分析】利用扇形的面积计算公式、弧长公式即可得出.【解答】解:由弧长公式可得6=3r,解得r=2.∴扇形的面积S==6.故选B.【点评】本题考查了扇形的面积计算公式、弧长公式,属于基础题.10.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7

B.25

C.15

D.35参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在中,分别为内角所对的边,且.现给出三个条件:①;②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是

;(用序号填写)由此得到的的面积为

.参考答案:①②,;或①③,12.不等式≥0的解集为.参考答案:(﹣2,1]【考点】其他不等式的解法.【分析】不等式≥0,即为,或,运用一次不等式的解法,计算即可得到所求解集.【解答】解:不等式≥0,即为:或,解得或,即有﹣2<x≤1或x∈?,则﹣2<x≤1.即解集为(﹣2,1].故答案为(﹣2,1].13.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=.参考答案:2【考点】函数的值.【分析】由题意得当x<0时,f(x)=﹣x+1,由此能求出f(﹣1).【解答】解:∵f(x)是偶函数,当x≥0时,f(x)=x+1,∴当x<0时,f(x)=﹣x+1,∴f(﹣1)=﹣(﹣1)+1=2.故答案为:2.14.已知,,,则向量,的夹角为

.参考答案:120°设向量与的夹角为θ,∵向量,∴﹣4+4=12,即4﹣4×2×1×cosθ+4=12,∴cosθ=﹣,∴θ=120°

15.函数y=(x﹣1)2的最小值为.参考答案:0考点:二次函数的性质.专题:函数的性质及应用.分析:根据顶点式得到它的顶点坐标是(1,0),再根据其a>0,即抛物线的开口向上,则它的最小值是0.解答:解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2的最小值y等于0.故答案为:0.点评:本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,属于基础题.16.设满足约束条件,则的最大值为__________.参考答案:.分析:由约束条件作出可行域,化目标函数为点与两点之间的斜率,数形结合得到最优解,把最优解的坐标代入目标函数得到答案.解析:由约束条件作出可行域如图:由图可知,在点与两点之间的斜率最大.把代入可得.故答案为:.点睛:常见代数式的几何意义有(1)表示点(x,y)与原点(0,0)的距离;(2)表示点(x,y)与点(a,b)之间的距离;(3)表示点(x,y)与原点(0,0)连线的斜率;(4)表示点(x,y)与点(a,b)连线的斜率.17.与直线2x+y+1=0的距离为的直线方程为. 参考答案:2x+y=0或2x+y+2=0【考点】点到直线的距离公式. 【专题】计算题;转化思想;综合法;直线与圆. 【分析】设与直线2x+y+1=0的距离为的直线方程为2x+y+k=0,利用两条平行线间的距离公式求出k,由此能求出直线方程. 【解答】解:设与直线2x+y+1=0的距离为的直线方程为2x+y+k=0, 则=,解得k=0或k=2, ∴与直线2x+y+1=0的距离为的直线方程为2x+y=0或2x+y+2=0. 故答案为:2x+y=0或2x+y+2=0. 【点评】本题考查直线方程的求法,是基础题,解题时要认真审题,注意平行线间距离公式的合理运用. 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设a为实数,记函数f(x)=a++的最大值为g(a).(1)设t=+,求t的取值范围,并把f(x)表示为t的函数m(t);(2)求g(a);(3)试求满足g(a)=g()的所有实数a.参考答案:【考点】函数最值的应用.【分析】(1)令t=+,由1+x≥0且1﹣x≥0,得﹣1≤x≤1,进而得m(t)的解析式.(2)由题意知g(a)即为函数m(t)=at2+t﹣a,t∈[,2]的最大值,分a>0、a=0、a<0三种情况利用函数的单调性求出函数f(x)的最大值为g(a);(3)分类讨论,求得g(a)的范围,即可求得满足g(a)=g()的所有实数a.【解答】解:(1)∵t=+,要使t有意义,必须1+x≥0且1﹣x≥0,即﹣1≤x≤1.∵t2=2+2∈[2,4],且t≥0…①,∴t的取值范围是[,2].由①得:=t2﹣1,∴m(t)=a(t2﹣1)+t=at2+t﹣a,t∈[,2].(2)由题意知g(a)即为函数m(t)=at2+t﹣a,t∈[,2]的最大值,∵直线t=﹣是抛物线m(t)=at2+t﹣a的对称轴,∴可分以下几种情况进行讨论:1°当a>0时,函数y=m(t),t∈[,2]的图象是开口向上的抛物线的一段,由t=﹣<0知m(t)在t∈[,2]上单调递增,故g(a)=m(2)=a+2;2°当a=0时,m(t)=t,在t∈[,2]上单调递增,有g(a)=2;3°当a<0时,函数y=m(t),t∈[,2]的图象是开口向下的抛物线的一段,若t=﹣∈(0,]即a≤﹣时,g(a)=m()=,若t=﹣∈(,2]即a∈(﹣,﹣]时,g(a)=m(﹣)=﹣a﹣,若t=﹣∈(2,+∞)即a∈(﹣,0)时,g(a)=m(2)=a+2.综上所述,有g(a)=;(3)当a>﹣时,g(a)=a+2>>a∈(﹣,﹣]时,﹣a∈[,],﹣a≠﹣g(a)=﹣a﹣>2=∴a>﹣时,g(a)>当a>0时,>0,由g(a)=g()可得,∴a=1;当a<0时,a?=1,∴a≤﹣1或≤﹣1∴g(a)=或g()=要使g(a)=g(),只需a≤﹣,≤﹣,∴综上,满足g(a)=g()的所有实数a或a=1.19.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,,x∈R),在同一个周期内,当时,函数取最大值3,当时,函数取最小值﹣1,(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位,再将所得图象上所有点的横坐标变为原来的倍,得到g(x)的图象,讨论g(x)在上的单调性.参考答案:【考点】HJ:函数y=Asin(ωx+φ)的图象变换;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(1)根据最值计算A,B,根据周期计算ω,根据f()=3计算φ;(2)根据函数图象变换得出g(x)的解析式,求出g(x)的单调区间即可.【解答】解:(1)由题意得,∴.f(x)的周期T=2()=.∴=,即ω=3.∵f()=2sin(+φ)+1=3,∴+φ=+2kπ,∴φ=﹣+2kπ,k∈Z,∵|φ|<,∴φ=﹣.∴f(x)=2sin(3x﹣)+1.(2)g(x)=2sin(2x+)+1,令﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z.[﹣+kπ,+kπ]∩[﹣,]=[﹣π,],∴g(x)在[﹣π,]上单调递增,在[﹣,﹣],[,]上单调递减.【点评】本题考查了三角函数的图象与性质,函数图象变换,属于中档题.20.已知向量=(sinx,2cosx),=(5cosx,cosx),函数f(x)=?+||2﹣.(1)求函数f(x)的最小正周期;(2)若x∈(,)时,f(x)=﹣3,求cos2x的值;(3)若cosx≥,x∈(﹣,),且f(x)=m有且仅有一个实根,求实数m的取值范围.参考答案:【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(1)根据平面向量数量积运算建立关系,求解f(x),利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期(2)根据x∈(,)时,出内层函数的取值范围,f(x)=﹣3,化简f(x),可求cos2x的值.(3)根据cosx≥,x∈(﹣,),确定x的范围,利用数形结合法作f(x)=m有且仅有一个实根,可得答案.【解答】解:(1)由函数f(x)=?+||2﹣.可得:f(x)=sinxcosx+2cos2x+sin2x+4cos2x﹣=sin2x+﹣cos2x+3+3cos2x=sin2x+cos2x=5sin(2x+)∴函数f(x)的最小正周期T=.(2)当x∈(,)可得2x+∈[,2π]∵f(x)=﹣3,即5sin(2x+)=﹣3∴sin(2x+)=∴cos(2x+)=∴cos2x=cos[(2x))=cos(2x+)cos)+sin(2x+)sin)=(3)由题意∵cosx≥,x∈(﹣,),∴x∈[,],∵f(x)=m有且仅有一个实根,即函数f(x)与y=m的图象只有一个交点.f(x)=5sin(2x+)∴2x+∈[,]令2x+=t,则t∈[,],那么f(x)=5sin(2x+)转化为g(t)=5sint与y=m的图象只有一个交点.,g(t)=5sint图象如下:从图象可看出:当﹣5≤m或m=5时,函数y=m与g(t)=5sint只有一个交点.故得实数m的取值范围是{m|﹣5≤m或m=5}21.计算:(1);(2)(lg5)2+lg2?lg50.参考答案:【考点】对数的运算性质;有理数指数幂的化简求值.【分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.【解答】解:(1)原式=.(2)原式=(lg5)2+lg2?(lg2+2lg5)=(lg5)2+2lg5?lg2+(lg2)2=(lg5+lg2)2=1.22.(10分)已知二次函数f(x)=ax2+bx+c(a,b,c为常数),满足条件(1)图象过原点;(2)f(1+x)=f(1﹣x);(3)方程f(x)=x有两个不等的实根试求f(x)的解析式并求x∈[﹣1,4]上的值域.参考答案:考点: 二次函数的性质;函数的值域.专题: 函数的性质及应用.分析: 由(1)便得到c=0,而根据(2)知x=1是f(x)的对称轴,所以得到b=﹣2a,所以f(x)=ax2﹣2ax.所以方程ax2﹣(2a+1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论