2022-2023学年山东省德州市夏津县双庙乡中学高二数学文期末试卷含解析_第1页
2022-2023学年山东省德州市夏津县双庙乡中学高二数学文期末试卷含解析_第2页
2022-2023学年山东省德州市夏津县双庙乡中学高二数学文期末试卷含解析_第3页
2022-2023学年山东省德州市夏津县双庙乡中学高二数学文期末试卷含解析_第4页
2022-2023学年山东省德州市夏津县双庙乡中学高二数学文期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年山东省德州市夏津县双庙乡中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个几何体的三视图如图所示,则该几何体的体积为

A.

B.

C.

D.

参考答案:D2.已知函数y=log2(x-1)的定义域为A,实数集R为全集,则=

)A.(1,)

B.(,1

C.[1,

D.(,1

参考答案:B略3.若曲线表示焦点在轴上的双曲线,则实数的取值范围为(

参考答案:B略4.若椭圆两准线间的距离等于焦距的倍,则这个椭圆的离心率为

)A.

B.

C.

D.参考答案:D略5.设,那么的值为(

).-

.-

.-

.-1参考答案:A6.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为

参考答案:B7.在等差数列中,已知,那么等于-------------(

)A.4

B.5

C.6

D.7参考答案:A略8.已知双曲线的一条渐近线过点(2,-1),则双曲线的离心率为()A.

B.

C.

D.参考答案:C双曲线渐近线方程为,因为渐近线过点,所以,选C.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.在△ABC中,,则A等于

)A.30°

B.45°

C.60°

D.120°参考答案:A10.下列关于棱柱的一些叙述正确的有()①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形。A①②;B①③;C②③;D①②③参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知,且,若恒成立,则实数的取值范围是

.参考答案:12.双曲线的渐近线方程是

参考答案:略13.函数的定义域为______.参考答案:(0,2]【分析】根据定义域的求法:(为偶数)、。【详解】由题意得【点睛】常见函数定义域的求法:(为偶数)14.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是

参考答案:略15.已知,若∥,则的值为(

)A.1

B.-1

C.2

D.-2参考答案:B略16.函数在时有极值,那么的值分别为_______

参考答案:4,-11略17.定义:曲线上的点到直线的距离的最小值称为曲线到直线的距离;现已知曲线到直线的距离等于,则实数的值为

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线的准线,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l的方程为x=﹣4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.参考答案:考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设C方程为,利用顶点恰好经过抛物线的准线,求出b,根据椭圆经过点,求出a,即可求椭圆C的方程;(Ⅱ)设直线AB的方程代入,利用韦达定理,结合斜率公式,即可探索k1,k2,k3之间的关系式.解答:解:(Ⅰ)设C方程为,∵抛物线的准线,∴…(1分)由点在椭圆上,∴,∴a2=4…(3分)∴椭圆C的方程为.…(4分)(Ⅱ)由题意知,直线斜率存在.∵F(﹣1,0),∴设直线AB的方程为y=k(x+1),代入,得(4k2+3)x2+8k2x+4k2﹣12=0,…(5分)设A(x1,y1),B(x2,y2),由韦达定理得.…(6分)由题意知M(﹣4,﹣3k),…(8分)∵y1=k(x1+1),y2=k(x2+1),代人k1,k2得,∴…(10分)=…(12分)∴k1+k2=2k3…(13分)点评:本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能解答出.19.某市A,B两校组织了一次英语笔试(总分120分)联赛,两校各自挑选了英语笔试成绩最好的100名学生参赛,成绩不低于115分定义为优秀.赛后统计了所有参赛学生的成绩(都在区间[100,120]内),将这些数据分成4组:[100,105),[105,110),[110,115),[115,120]得到如下两个频率分布直方图:(1)分别计算A,B两校联赛中的优秀率;(2)联赛结束后两校将根据学生的成绩发放奖学金,已知奖学金y(单位:百元)与其成绩t的关系式为①当时,试问A,B两校哪所学校的获奖人数更多?②当时,若以奖学金的总额为判断依据,试问本次联赛A,B两校哪所学校实力更强?参考答案:(1)A校的优秀率为0.3,B校的优秀率为0.2(2)①B校的获奖人数更多②A校实力更强,详见解析【分析】(1)根据频率分布直方图找出、两校频率分布直方图中成绩不小于分的矩形面积,即可得出这两个学校的优秀率;(2)①根据题意计算出、两校成绩不低于的人数,即为获奖人数,再与这两个学校的获奖人数的多少进行比较;②根据(奖学金)与成绩之间的关系式计算出、两校所获得的奖金数,再对两校所得奖金数进行比较,得出获得奖金数较多的学校实力较强。【详解】(1)由频率分布直方图知,校的优秀率为,校的优秀率为;(2)①A校的获奖人数为,B校的获奖人数为,所以B校的获奖人数更多.

②A校学生获得的奖学金的总额为(百元)=16900(元),

B校学生获得的奖学金的总额为(百元)=16600(元),

因为,所以A校实力更强.【点睛】本题考查频率分布直方图的应用,考查频数以及平均数的计算,在频率分布直方图中弄清频率、频数以及总容量三者之间的关系,还应掌握众数、平均数以及中位数的求解原则,考查计算能力,属于中等题。20.平面直角坐标系xOy中,已知椭圆的离心率为,左右焦点分别为F1和F2,以点F1为圆心,以3为半径的圆与以点F2为圆心,以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程.(2)设椭圆,P为椭圆C上任意一点,过点P的直线交椭圆E于A、B两点,射线PO交椭圆E于点Q.①求的值.②(理科生做)求面积的最大值.③(文科生做)当时,面积的最大值.参考答案:见解析.解:(1)设两圆的一个交点为,则,,由在椭圆上可得,则,,得,则,故椭圆方程为.(2)①椭圆为方程为,设,则有,在射线上,设,代入椭圆可得,解得,即,.②(理)由①可得为中点,在直线上,则到直线的距离与到直线的距离相等,故,联立,可得,则,,,联立,得,,,当且仅当时等号成立,故最大值为.②(文)此时直线方程为,由①可得为的中点,而在直线上,则到直线的距离与到直线的距离相等,则,联立,可得,则,,,联立,得,,.故最大值为.21.已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程,并说明其表示什么轨迹.(2)若直线的极坐标方程为sinθ﹣cosθ=,求直线被曲线C截得的弦长.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)由sin2α+cos2α=1,能求出曲线C的普通方程,再由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的极坐标方程,由此得到曲线C是以(3,1)为圆心,以为半径的圆.(2)先求出直线的直角坐标为x﹣y+1=0,再求出圆心C(3,1)到直线x﹣y+1=0的距离d,由此能求出直线被曲线C截得的弦长.【解答】解:(1)∵曲线C的参数方程为(α为参数),∴由sin2α+cos2α=1,得曲线C的普通方程为(x﹣3)2+(y﹣1)2=10,即x2+y2=6x+2y,由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,得曲线C的极坐标方程为ρ2=6ρcosθ+2ρsinθ,即ρ=6cosθ+2sinθ,它是以(3,1)为圆心,以为半径的圆.(2)∵直线的极坐标方程为sinθ﹣cosθ=,∴ρsinθ﹣ρcosθ=1,∴直线的直角坐标为x﹣y+1=0,∵曲线C是以(3,1)为圆心,以r=为半径的圆,圆心C(3,1)到直线x﹣y+1=0的距离d==,∴直线被曲线C截得的弦长|AB|=2=2=.22.已知抛物线C;y2=2px(p>0)过点A(1,﹣2);(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使直线l与抛物线C有公共点,直线OA与l的距离等于?若存在,求出直线l的方程,说明理由.参考答案:【考点】抛物线的简单性质.【分析】(1)将(1,﹣2)代入抛物线方程求得p,则抛物线方程可得,进而根据抛物线的性质求得其准线方程.(2)先假设存在符合题意的直线,设出其方程,与抛物线方程联立,根据直线与抛物线方程有公共点,求得t的范围,利用直线AO与L的距离,求得t,则直线l的方程可得.【解答】解:(1)将(1,﹣2)代入y2=2px,得(﹣2)2=2p?1,所以p=2.故所求的抛物线C的方程为y2=4x,其准线方程为x=﹣1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论