云南省曲靖市陆良县2024届八上数学期末检测模拟试题含解析_第1页
云南省曲靖市陆良县2024届八上数学期末检测模拟试题含解析_第2页
云南省曲靖市陆良县2024届八上数学期末检测模拟试题含解析_第3页
云南省曲靖市陆良县2024届八上数学期末检测模拟试题含解析_第4页
云南省曲靖市陆良县2024届八上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市陆良县2024届八上数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.2.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A. B. C. D.3.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是A.AB=DE B.∠B=∠E C.EF=BC D.EF//BC4.当时,代数式的值是().A.-1 B.1 C.3 D.55.式子:,,,中,分式的个数是()A.1个 B.2个 C.3个 D.4个6.若分式有意义,则满足的条件是()A.或-2 B. C. D.7.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为()A.kg B.kg C.kg D.kg8.如图,点是的角平分线上一点,于点,点是线段上一点.已知,,点为上一点.若满足,则的长度为()A.3 B.5 C.5和7 D.3或79.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点、,再分别以点、为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的面积是()A.10 B.15 C.20 D.3010.下列五个命题中,真命题有()①两条直线被第三条直线所截,内错角相等②如果和是对顶角,那么③是一组勾股数④的算术平方根是⑤三角形的一个外角大于任何一个内角A.1个 B.2个 C.3个 D.4个11.无论取什么数,总有意义的分式是()A. B. C. D.12.表示实数a与1的和不大于10的不等式是()A.a+1>10 B.a+1≥10 C.a+1<10 D.a+1≤10二、填空题(每题4分,共24分)13.如图,在中,,平分,交于点,若,,则周长等于__________.14.已知,、、是的三边长,若,则是_________.15.若实数满足,且恰好是直角三角形的两条边,则该直角三角形的斜边长为_____.16.计算:=__________.17.如图,P为∠MBN内部一定点,PD⊥BN,PD=3,BD=1.过点P的直线与BM和BN分别相交于点E和点F,A是BM边上任意一点,过点A作AC⊥BN于点C,有=3,则△BEF面积的最小值是______.18.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.20.(8分)如图1,在等腰直角三角形中,,点在边上,连接,连接(1)求证:(2)点关于直线的对称点为,连接①补全图形并证明②利用备用图进行画图、试验、探究,找出当三点恰好共线时点的位置,请直接写出此时的度数,并画出相应的图形21.(8分)如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.22.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若AB=BC+AD,求证:BE⊥AF.23.(10分)某农场去年生产大豆和小麦共吨.采用新技术后,今年总产量为吨,与去年相比较,大豆超产,小麦超产.求该农场今年实际生产大豆和小麦各多少吨?24.(10分)(1)计算:(2)求x的值:25.(12分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.26.解方程(组)(1)2(x-3)-3(x-5)=7(x-1)(2)=1(3)(4)

参考答案一、选择题(每题4分,共48分)1、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【题目详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【题目点拨】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.2、B【解题分析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【题目点拨】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.3、C【题目详解】试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,AB=DE,则△ABC和△DEF中,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故D选项错误;故选C.考点:全等三角形的判定.4、B【分析】将代入代数式中求值即可.【题目详解】解:将代入,得原式=故选B.【题目点拨】此题考查的是求代数式的值,解决此题的关键是将字母的值代入求值即可.5、B【分析】根据分式的定义进行解答即可.【题目详解】四个式子中分母含有未知数的有:,共2个.故选:B.【题目点拨】本题考查了分式的概念,判断一个有理式是否是分式,不要只看是不是的形式,关键是根据分式的定义看分母中是否含有字母,分母中含有字母则是分式,分母中不含字母,则不是分式.6、B【分析】根据分式有意义的条件:分母不能为0进行计算即可.【题目详解】∵分式有意义,∴a-1≠0,∴a≠1.故选:B.【题目点拨】考查了分式有意义的条件,解题关键是熟记:当分母不为0时,分式有意义.7、A【分析】科学记数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数。本题小数点往右移动到2的后面,所以【题目详解】解:0.00021故选A.【题目点拨】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.8、D【分析】过点P作PE⊥AO于E,根据角平分线的性质和定义可得PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°,再根据角平分线的性质可得OE=ON=5,然后根据点D与点E的先对位置分类讨论,分别画出对应的图形,利用HL证出Rt△PDE≌Rt△PMN,可得DE=MN,即可求出OD.【题目详解】解:过点P作PE⊥AO于E∵OC平分∠AOB,,∴PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°∴∠OPE=90°-∠POE=90°-∠PON=∠OPN∴PO平分∠EPN∴OE=ON=5①若点D在点E左下方时,连接PD,如下图所示在Rt△PDE和Rt△PMN中∴Rt△PDE≌Rt△PMN∴DE=MN∵MN=ON-OM=2∴DE=2∴OD=OE-DE=3②若点D在点E右上方时,连接PD,如下图所示在Rt△PDE和Rt△PMN中∴Rt△PDE≌Rt△PMN∴DE=MN∵MN=ON-OM=2∴DE=2∴OD=OE+DE=1综上所述:OD=3或1.故选D.【题目点拨】此题考查的是角平分线的性质和全等三角形的判定及性质,掌握角平分线的性质、构造全等三角形的方法、全等三角形的判定及性质和分类讨论的数学思想是解决此题的关键.9、B【解题分析】作DE⊥BC于E,根据角平分线的性质得到DE=AD=3,根据三角形的面积公式计算即可.【题目详解】解:作DE⊥BC于E,由基本作图可知,BP平分∠ABC,

∵AP平分∠ABC,∠A=90°,DE⊥BC,

∴DE=AD=3,

∴△BDC的面积,

故选:B.【题目点拨】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10、B【分析】利用平行线的性质、对顶角的定义、勾股数的定义、实数的性质及外角定理分别判断后即可确定正确的选项.【题目详解】①两条平行直线被第三条直线所截,内错角相等,故错误,为假命题.②如果∠1和∠2是对顶角,那么∠1=∠2,正确,为真命题.③勾股数必须都是整数,故是一组勾股数错误,为假命题.④=4,4算术平方根是,故为真命题,⑤三角形的一个外角大于任何与之不相邻的一个内角,为假命题.故选B.【题目点拨】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的定义、勾股数的定义、实数的性质及外角定理,难度不大,属于基础题.11、B【分析】根据分式有意义的条件,分别进行判断,即可得到答案.【题目详解】解:A、当时,无意义,故A错误;B、∵,则总有意义,故B正确;C、当时,无意义,故C错误;D、当时,无意义,故D错误;故选:B.【题目点拨】本题考查了分式有意义的条件,分式无意义的条件,解题的关键是熟练掌握分母不等于0,则分式有意义.12、D【分析】根据题意写出不等式即可.【题目详解】由题意可得:a+1≤1.故选D.【题目点拨】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.二、填空题(每题4分,共24分)13、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【题目详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【题目点拨】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.14、等腰直角三角形【分析】首先根据题意由非负数的性质可得:a-b=0,a2+b2-c2=0,进而得到a=b,a2+b2=c2,根据勾股定理逆定理可得△ABC的形状为等腰直角三角形.【题目详解】解:∵|a-b|+|a2+b2-c2|=0,

∴a-b=0,a2+b2-c2=0,

解得:a=b,a2+b2=c2,

∴△ABC是等腰直角三角形.

故答案为:等腰直角三角形.【题目点拨】本题考查勾股定理逆定理以及非负数的性质,解题关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15、或.【分析】利用非负数的性质求出,再分情况求解即可.【题目详解】,∴,,①当是直角边时,则该直角三角形的斜边,②当是斜边时,则斜边为,故答案为或.【题目点拨】本题考查非负数的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、【分析】先把除法转化为乘法,然后约分化简.【题目详解】解:原式==.故答案为:.【题目点拨】本题考查了分式的除法,分式的除法通常转化为分式的乘法来计算,分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘,可简单理解为:除以一个数(或式)等于乘以这个数(或式)的倒数.17、24【分析】如图,作EH⊥BN交BN于点H,先证得△BHE∼△BCA,然后设BH=t,进而得到EH=3t,HD=1-t,同理得△FPD∼△FEH,求得,进而求得,最后根据,令,得到.【题目详解】解:如图,作EH⊥BN交BN于点H,∵AC⊥BN,∴EH//AC,∴△BHE∼△BCA,∴设BH=t,则EH=3t,HD=BD-BH=1-t又∵PD⊥BN,∴EH//PD,∴△FPD∼△FEH,∴又∵∴解得:∴,∴,∴,令,则,而,∴∴△BEF面积的最小值是24,故答案为:24.【题目点拨】本题考查相似三角形的性质与判定综合问题,解题的关键是根据相似三角形的性质构建各边的关系,以及用换元法思想求代数式的最值.18、2:2【题目详解】解:∵小正方形与大正方形的面积之比为1:12,∴设大正方形的面积是12,∴c2=12,∴a2+b2=c2=12,∵直角三角形的面积是=2,又∵直角三角形的面积是ab=2,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=12+2×6=12+12=21,∴a+b=1.则a、b是方程x2﹣1x+6=0的两个根,故b=2,a=2,∴.故答案是:2:2.考点:勾股定理证明的应用三、解答题(共78分)19、(1)详见解析;(2)详见解析.【分析】(1)以A为圆心,任意长为半径画弧交AC、AB于M、N,分别以M、N为圆心大于MN长为半径画弧,两弧交于点P,直线射线AP交BC于E,线段AE即为所求;4(2)只要证明∠CEF=∠CFE,即可推出CE=CF;【题目详解】(1)如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【题目点拨】本题考查作图-基本作图,等腰三角形的判定等知识,解题的关键是熟练掌握五种基本作图,灵活运用所学知识解决问题.20、(1)证明见解析;(2)①见解析;②画图见解析,.【分析】(1)先根据同角的余角相等推出∠BAD=∠CAE,再根据SAS证得△BAD≌△CAE,进而可得结论;(2)①根据题意作图即可补全图形;利用轴对称的性质可得ME=AE,CM=CA,然后根据SSS可推出△CME≌△CAE,再利用全等三角形的性质和(1)题的∠BAD=∠CAE即可证得结论;②当三点恰好共线时,设AC、DM交于点H,如图3,由前面两题的结论和等腰直角三角形的性质可求得∠DCM=135°,然后在△AEH和△DCH中利用三角形的内角和可得∠HAE=∠HDC,进而可得,接着在△CDM中利用三角形的内角和定理求出∠CMD的度数,再利用①的结论即得答案.【题目详解】解:(1)证明:∵AE⊥AD,∴∠DAE=90°,∴∠CAE+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAE,又∵BA=CA,DA=EA,∴△BAD≌△CAE(SAS),∴;(2)①补全图形如图2所示,∵点关于直线的对称点为,∴ME=AE,CM=CA,∵CE=CE,∴△CME≌△CAE(SSS),∴,∵∠BAD=∠CAE,∴;②当三点恰好共线时,设AC、DM交于点H,如图3,由(1)题知:,∵△CME≌△CAE,∴,∴∠DCM=135°,在△AEH和△DCH中,∵∠AEH=∠ACD=45°,∠AHE=∠DHC,∴∠HAE=∠HDC,∵,∴,∴,∵,∴.【题目点拨】本题考查了依题意作图、等腰直角三角形的性质、轴对称的性质、全等三角形的判定和性质以及三角形的内角和定理等知识,综合性较强,熟练掌握上述知识是解题关键.21、证明见解析【解题分析】试题分析:根据SAS证明△ABD≌△ACE.试题解析:证明:∵AD⊥AE,AB⊥AC,∴∠CAB=∠DAE=90°.∴∠CAB+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).22、(1)见解析;(2)见解析【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE;

(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论.【题目详解】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA);(2)由(1)知△ADE≌△FCE,∴AE=EF,AD=CF,∵AB=BC+AD,∴AB=BC+CF,即AB=BF,在△ABE与△FBE中,,∴△ABE≌△FBE(SSS),∴∠AEB=∠FEB=90°,∴BE⊥AF.【题目点拨】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.23、大豆,小麦今年的产量分别为110吨和240吨【分析】设农场去年生产大豆x吨,小麦y吨,利用去年计划生产大豆和小麦共吨.x+y=300,再利用大豆超产,小麦超产.今年总产量为吨,得出等式(1+20%)y+(1+1%)x=350,进而组成方程组求出答案.【题目详解】解:设去年大豆、小麦产量分别为x吨、y吨,由题意得:解得吨,吨.答:大豆,小麦今年的产量分别为110吨和240吨.【题目点拨】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.24、(1);(2)【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【题目详解】解:(1)原式=;(2)【题目点拨】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键25、(1)证明见解析;(2)证明见解析;(3)BG=CE.证明见解析.【分析】(1)证明△BDF≌△CDA,得到BF=AC;(2)由(1)问可知AC=BF,所以CE=AE=BF;(3)BG=CG,CG在△EG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论