




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省乐陵市第一中学数学八上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列运算,正确的是()A. B. C. D.2.在中,,若,,则AB等于A.2 B.3 C.4 D.3.点P(2018,2019)在第()象限.A.一 B.二 C.三 D.四4.关于x的分式方程的解为正实数,则实数m可能的取值是()A.2 B.4 C.6 D.75.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD6.计算结果为x2﹣y2的是()A.(﹣x+y)(﹣x﹣y) B.(﹣x+y)(x+y)C.(x+y)(﹣x﹣y) D.(x﹣y)(﹣x﹣y)7.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°8.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D,如果ED=5,则EC的长为()A.5 B.8 C.9 D.109.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A. B.C. D.10.计算,结果正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知一次函数y=(k-4)x+2,若y随x的增大而增大,则k的值可以是_____(写出一个答案即可).12.如图,在△ABC中,∠ACB=81°,DE垂直平分AC,交AB于点D,交AC于点E.若CD=BC,则∠A等于_____度.13.如图,在中,,,的垂直平分线交于,交于,且,则的长为_______.14.计算=_______.15.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.16.如果一个多边形的内角和为1260º,那么从这个多边形的一个顶点引对角线,可以把这个多边形分成_______________个三角形.17.把命题“三角形内角和等于180°”改写成如果,那么.18.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.三、解答题(共66分)19.(10分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)20.(6分)已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.21.(6分)(1)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(2)如图②,在中,直线、分别是边、的垂直平分线,直线、的交点为.过点作于点.求证:.(3)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,,则的长为_____________.22.(8分)计算题:(1)27+13-(2)185×25÷(﹣223.(8分)如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).24.(8分)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.25.(10分)计算(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+326.(10分)如图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据合并同类项法则、同底数幂的乘法和同底数幂的除法逐一判断即可.【题目详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【题目点拨】此题考查的是合并同类项和幂的运算性质,掌握合并同类项法则、同底数幂的乘法和同底数幂的除法是解决此题的关键.2、C【解题分析】利用勾股定理计算即可.【题目详解】解:在中,,,,,故选:C.【题目点拨】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3、A【分析】根据各象限内点的坐标特征解答.【题目详解】解:点P(2018,2019)在第一象限.故选:A.【题目点拨】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4、B【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【题目详解】解:方程两边同乘(x-1)得,x+m-1m=3x-6,解得,由题意得,>0解得,m<6,又∵≠1∴m≠1,∴m<6且m≠1.故选:B【题目点拨】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.5、A【题目详解】解:如图连接CD、BD,∵CA=CD,BA=BD,
∴点C、点B在线段AD的垂直平分线上,
∴直线BC是线段AD的垂直平分线,
故A正确.
B、错误.CA不一定平分∠BDA.
C、错误.应该是S△ABC=•BC•AH.
D、错误.根据条件AB不一定等于AD.
故选A.6、A【分析】根据平方差公式和完全平方公式逐一展开即可【题目详解】A.(﹣x+y)(﹣x﹣y)=(-x)2-y2=x2﹣y2,故A选项符合题意;B.(﹣x+y)(x+y),故B选项不符合题意;C.(x+y)(﹣x﹣y),故C选项不符合题意;D.(x﹣y)(﹣x﹣y)=,故D选项不符合题意;故选A.【题目点拨】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键.7、C【解题分析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一8、D【分析】先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.【题目详解】∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,ED=5,∴BE=CE,∠B=∠DCE=30°,在Rt△CDE中,∵∠DCE=30°,ED=5,∴CE=2DE=10.故答案选D.【题目点拨】本题考查垂直平分线和直角三角形的性质,熟练掌握两者性质是解决本题的关键.9、C【分析】根据各选项中的函数图象可知直线l1:y=ax+b经过第一、二、三象限,从而判断出a、b的符号,然后根据a、b的符号确定出l2:y=bx﹣a的图象经过的象限,选出正确答案即可.【题目详解】解:∵直线l1:经过第一、三象限,∴a>1,∴﹣a<1.又∵该直线与y轴交于正半轴,∴b>1.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【题目点拨】本题考查了一次函数的图象,一次函数y=kx+b(k≠1),k>1时,一次函数图象经过第一三象限,k<1时,一次函数图象经过第二四象限,b>1时与y轴正半轴相交,b<1时与y轴负半轴相交.10、C【分析】先去括号,然后利用同底数幂的乘法运算法则计算得出答案.【题目详解】解:,故选:C.【题目点拨】本题主要考查了整式的乘法,同底数幂的乘法运算,熟练掌握相关运算法则是解题关键.二、填空题(每小题3分,共24分)11、1【分析】根据一次函数的性质列出一个关于k的不等式,再写出一个符合条件的k值即可.【题目详解】因y随x的增大而增大则解得因此,k的值可以是1故答案为:1.(注:答案不唯一)【题目点拨】本题考查了一次函数的性质:增减性,根据函数的增减性求出k的取值范围是解题关键.12、1【分析】先根据垂直平分线的性质得出,再根据等腰三角形的性质、三角形的外角性质可得,最后利用三角形的内角和定理即可得.【题目详解】垂直平分AC又在中,则解得故答案为:1.【题目点拨】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,利用等腰三角形的性质和外角的性质求出与的等量关系是解题关键.13、【分析】连接BE,由DE是AC的垂直平分线,可得∠DBE=∠A=30°,进而求得∠EBC=30°.根据含30度角的直角三角形的性质可得BE=2EC,AE=2EC,进而可以求得AE的长.【题目详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴BE是∠ABC的角平分线,∴DE=CE=5,在△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=1.故答案为:1cm.【题目点拨】此题主要考查线段的垂直平分线的性质和直角三角形的性质.熟练应用线段垂直平分线的性质是解题的关键.14、【分析】先运用零次幂和负整数次幂化简,然后再计算即可.【题目详解】解:.故答案为:.【题目点拨】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键.15、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【题目详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【题目点拨】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.16、1【分析】首先根据多边形内角和公式可得多边形的边数,再计算分成三角形的个数.【题目详解】解:设此多边形的边数为,由题意得:,
解得;,
从这个多边形的一个顶点引对角线,可以把这个多边形分成的三角形个数:9-2=1,
故答案为:1.【题目点拨】此题主要考查了多边形的内角,关键是掌握多边形的内角和公式.17、有一个三角形的三个内角;它们和等于180°【解题分析】试题分析:这个题是考察命题的定义的理解,所以知道题设和结论就可以写出.考点:命题的定义,定理18、1【分析】求出∠BAD=∠BAC﹣∠DAC=10°,求出AB=2,求出BC=4,则CD可求出.【题目详解】∵AD⊥BC于点D,∠C=10°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=10°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=10°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=1.故答案为:1.【题目点拨】此题主要考查直角三角形的性质与证明,解题的关键是熟知含10°的直角三角形的性质.三、解答题(共66分)19、见解析【解题分析】根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可【题目详解】【题目点拨】考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.20、1【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出1a-5b+8的值,然后根据立方根的定义求解.【题目详解】∵2a+1的平方根是±3,3a+2b-1的立方根是-2,
∴2a+1=9,3a+2b-1=-8,
解得a=1,b=-8,
∴1a-5b+8=1×1-5×(-8)+8=61,
∴1a-5b+8的立方根是1.【题目点拨】此题考查平方根,立方根的定义,列式求出a、b的值是解题的关键.21、(1)答案见解析;(2)证明见解析;(3)1.【解题分析】(1)根据垂直得出,证明△PAC≌△PBC(SAS)即可;(2)如图②中,由直线、的交点为,证明出,利用等腰三角形三线合一即可证明;(3)连接BD,BE,利用垂直平分线的性质,得出AD=BD,BE=CE,证明△BDE是等边三角形即可.【题目详解】(1)如图①,定理证明:∵MN⊥AB,∴又∵∴△PAC≌△PBC(SAS),∴(2)连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴∵直线n是边AC的垂直平分线,∴∴∵OH⊥AB,∴AH=BH.(3)连接BD,BE,∵∠ABC=120°,AB=AC,∴∠A=∠C=30°,∵直线垂直平分AB,直线k垂直平分BC,∴AD=BD,BE=CE,∴∠A=∠ABD=∠EBC=∠C=30°,∴∠DBE=120°-30°-30°=60°,∠EDB=∠A+∠ABD=60°,∴△BED是等边三角形,∴AD=BD=BE=CE=DE,∵AC=11,∴,故答案为:1.【题目点拨】考查了线段垂直平分线的性质,等腰三角形的判定和性质,等边三角形的判定和性质,三角形外角的性质,熟记三角形判定和性质是解题关键.22、(1)433【解题分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.【题目详解】解:(1)原式=13+33﹣23=4(2)原式=185×20÷(﹣2=72÷(﹣8)=﹣72÷8=﹣9=﹣1.故答案为:(1)433【题目点拨】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.23、(1)见解析;(2)△BDC≌△CEB,△DOB≌△EOC,△AOB≌△AOC,△ADO≌△AEO【分析】(1)根据“AAS”证明△ABE≌△ACD,从而得到AB=AC;(2)根据全等三角形的判定方法可得到4对全等三角形.【题目详解】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:∵AD=AE,∴BD=CE,而△ABE≌△ACD,∴CD=BE,∵BD=CE,CD=BE,BC=CB,∴△BDC≌△CEB(SSS);∴∠BCD=∠EBC,∴OB=OC,∴O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保险监管相关保险服务合作协议书
- 2025年老年护理院感染控制培训计划
- 2025学年苏教版二年级班级文化建设计划
- 小学综合组课外拓展活动计划
- 电商平台运营工作总结范文
- 环保部门应急演练计划
- 2025年第三届国学常识知识竞赛问答题库及答案解析(共70题)
- 医疗器械生命周期管理计划
- 中学音乐欣赏课程活动计划
- 企业内部课件开发方案
- 2023年供货方案 医疗器械供货方案(四篇)
- 森林病虫害防治自测练习试题与答案
- GB/T 3728-1991工业乙酸乙酯
- GB/T 34949-2017实时数据库C语言接口规范
- GB/T 3452.1-2005液压气动用O形橡胶密封圈第1部分:尺寸系列及公差
- GB/T 23641-2018电气用纤维增强不饱和聚酯模塑料(SMC/BMC)
- 2023年国际焊接工程师考试IWE结构试题
- 精华版-赵武灵王胡服骑射课件
- 《高等教育心理学》《高等教育学》样题
- 高等学校英语应用能力考试〔B级〕真题及答案
- 高三(5)高考冲刺家长会课件
评论
0/150
提交评论