山东省潍坊市峡山经济开发区2024届数学八上期末学业质量监测模拟试题含解析_第1页
山东省潍坊市峡山经济开发区2024届数学八上期末学业质量监测模拟试题含解析_第2页
山东省潍坊市峡山经济开发区2024届数学八上期末学业质量监测模拟试题含解析_第3页
山东省潍坊市峡山经济开发区2024届数学八上期末学业质量监测模拟试题含解析_第4页
山东省潍坊市峡山经济开发区2024届数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市峡山经济开发区2024届数学八上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在钝角三角形中,为钝角,,,,则的取值范围是()A. B. C. D.2.下列乘法运算中不能用平方差公式计算的是()A.(x+1)(x﹣1) B.(x+1)(﹣x+1)C.(﹣x+1)(﹣x﹣1) D.(x+1)(﹣x﹣1)3.运用乘法公式计算,下列结果正确的是()A. B. C. D.4.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形5.直线y=kx+2过点(﹣1,0),则k的值是()A.2 B.﹣2 C.﹣1 D.16.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为,则表示棋子“炮”的点的坐标为()A. B. C. D.7.将一元二次方程化成一般形式后,二次项系数和一次项系数分别为().A.5,-1 B.5,4 C.5,-4 D.8.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)9.已知点A(m+2,﹣3),B(﹣2,n﹣4)关于y轴对称,则m﹣n的值为()A.4 B.﹣1 C.1 D.010.下列各点在正比例函数的图象上的是()A. B. C. D.11.如图所示,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是A. B. C. D.12.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.5二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=________________°.14.若,则=_____.15.如图,点在内,因为,,垂足分别是、,,所以平分,理由是______.16.如图,在等腰三角形中,,为边上中点,多点作,交于,交于,若,,则的面积为______.17.四边形ABCD中,∠B=∠D=90°,∠C=72°,在BC、CD上分别找一点M、N,使△AMN的周长最小时,∠AMN+∠ANM的度数为_______18.某校规定:学生的单科学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.已知某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,那么他本学期数学学期综合成绩是__________分三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.20.(8分)计算.(1).(2).21.(8分)同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴求:(1);(2);(3)若,则m、n与a、b的关系是什么?并说明理由.22.(10分)已知a,b,c为△ABC的三边长,且.(1)求a,b值;(2)若△ABC是等腰三角形,求△ABC的周长.23.(10分)先化简式子:÷(a+2﹣),再从3,2,0三个数中选一个恰当的数作为a的值代入求值.24.(10分)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.25.(12分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.

(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.26.如图,为等边三角形,为上的一个动点,为延长线上一点,且.(1)当是的中点时,求证:.(2)如图1,若点在边上,猜想线段与之间的关系,并说明理由.(3)如图2,若点在的延长线上,(1)中的结论是否仍然成立,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】由三角形的三边关系可知的取值范围,又因为是钝角所对的边,应为最长,故可知.【题目详解】解:由三边关系可知,又∵为钝角,∴的对边为,应为最长边,∴,故选B.【题目点拨】本题考查三角形的三边关系,同时应注意角越大,所对边越长,理解三角形的边角之间的不等关系是解题的关键.2、D【分析】根据平方差公式的特点逐个判断即可.【题目详解】解:选项A:(x+1)(x-1)=x2-1,故选项A可用平方差公式计算,不符合题意,选项B:(x+1)(-x+1)=1-x2,故选项B可用平方差公式计算,不符合题意,选项C:(-x+1)(-x-1)=x2-1,故选项C可用平方差公式计算,不符合题意,选项D:(x+1)(-x-1)=-(x+1)2,故选项D不可用平方差公式计算,符合题意,故选:D.【题目点拨】此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.3、B【分析】利用添括号法则将y-3看成一个整体,然后利用平方差公式和完全平方公式计算即可.【题目详解】解:====故选B.【题目点拨】此题考查的是平方差公式和完全平方公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.4、B【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、A【分析】把(﹣1,0)代入直线y=kx+1,得﹣k+1=0,解方程即可求解.【题目详解】解:把(﹣1,0)代入直线y=kx+1,得:﹣k+1=0解得k=1.故选A.【题目点拨】本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.6、D【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【题目详解】如图所示:棋子“炮”的点的坐标为:(1,3).

故选:D.【题目点拨】本题主要考查了坐标确定位置,正确得出原点的位置是解题关键.7、C【分析】先化成一般式,再根据二次项系数与一次项系数的定义即可求解.【题目详解】解:化成一元二次方程的一般式得:,故二次项系数为:5,一次项系数为:-4,故选:C.【题目点拨】此题主要考查了一元二次方程的一般形式,正确把握相关定义是解题关键.8、C【解题分析】先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【题目详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9、B【分析】直接利用关于y轴对称的点的性质得出m,n的值,进而得出答案.【题目详解】∵点A(m+2,﹣3),B(﹣2,n-4)关于y轴对称,∴m+2=2,n-4=﹣3解得:m=0,n=1则m-n=﹣1故选:B【题目点拨】本题考查关于y轴对称的点的坐标特征:关于y轴对称的两点,纵坐标相同,横坐标互为相反数.掌握关于y轴对称的点的坐标特征是解题的关键.10、A【分析】分别把各点代入正比例函数的解析式进行检验即可.【题目详解】A、∵当x=−1时,y=2,∴此点在函数图象上,故本选项正确;B、∵当x=1时,y=−2≠2,∴此点不在函数图象上,故本选项错误;C、∵当x=0.5时,y=−1≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=−2时,y=4≠1,∴此点不在函数图象上,故本选项错误.故选:A.【题目点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11、B【分析】根据全等三角形的判定的方法进行解答即可.【题目详解】A、∵AB∥DC,∴∠BAC=∠DCA,由,得出△ADC≌△CBA,不符合题意;B、由AB=CD,AC=CA,∠2=∠1无法得出△ADC≌△CBA,符合题意;C、由得出△ADC≌△CBA,不符合题意;D、由得出△ADC≌△CBA,不符合题意;故选C.【题目点拨】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ADC≌△CBA的另一个条件.12、C【解题分析】试题解析:根据题意得:360°÷60°=6,所以,该多边形为六边形.故选C.考点:多边形的内角与外角.二、填空题(每题4分,共24分)13、1.【解题分析】试题分析:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=1°,故答案为1.点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案.14、【解题分析】通过设k法计算即可.【题目详解】解:∵,∴设a=2k,b=3k(k≠0),则,故答案为:.【题目点拨】本题考查比例的性质,比较基础,注意设k法的使用.15、角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【题目详解】解:∵PM⊥OA,PN⊥OB,PM=PN∴OP平分∠AOB(在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【题目点拨】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.16、【分析】利用等腰直角三角形斜边中点D证明AD=BD,∠DBC=∠A=45,再利用证得∠ADE=∠BDF,由此证明△ADE≌△BDF,得到BC的长度,即可求出三角形的面积.【题目详解】∵,AB=BC,∴∠A=45,∵为边上中点,∴AD=CD=BD,∠DBC=∠A=45,∠ADB=90,∵,∴∠EDB+∠BDF=∠EDB+∠ADE=90,∴∠ADE=∠BDF,∴△ADE≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴的面积为=,故答案为:.【题目点拨】此题考查等腰直角三角形的性质,三角形全等的判定及性质.17、144°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【题目详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵四边形ABCD中,∠B=∠D=90°,∠C=72°∴∠DAB=108°,∴∠AA′M+∠A″=72°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×72°=144°,故填:144°.【题目点拨】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.18、1【分析】根据加权平均数的定义即可求解.【题目详解】依题意得本学期数学学期综合成绩是90×+90×+95×=1故答案为:1.【题目点拨】此题主要考查加权平均数,解题的关键是熟知加权平均数的求解方法.三、解答题(共78分)19、;点或;点P的坐标为或.【分析】(1)由B、C坐标,根据待定系数法可求得直线AB的解析式;(2)由(1)列出AB的方程,求出B的坐标,求出的面积和的面积,设P的纵坐标为m,代值求出m,再列出直线OC的解析式为,当点P在OC上时,求出P点坐标,当点P在BC上时,求出P点坐标即可;(3)根据直角三角形的性质和点坐标列出解析式解出即可.【题目详解】点A的坐标为,设直线AB的解析式为,点在直线AB上,,,直线AB的解析式为;由知,直线AB的解析式为,令,,,,,的面积是的面积的,,设P的纵坐标为m,,,,直线OC的解析式为,当点P在OC上时,,,当点P在BC上时,,,即:点或;是直角三角形,,当点P在OC上时,由知,直线OC的解析式为,直线BP的解析式的比例系数为,,直线BP的解析式为,联立,解得,,当点P在BC上时,由知,直线AB的解析式为,直线OP的解析式为,联立解得,,,即:点P的坐标为或.【题目点拨】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.20、(1);(2).【分析】(1)先运用乘法分配律,二次根式分母有理化计算,再化为最简二次根式即可;(2)将二次根式分母有理化,再化为最简二次根式,负数的立方根是负数,任何非零数的0次幂为1,负指数幂即先求其倒数,据此解题.【题目详解】(1).(2).【题目点拨】本题考查二次根式的混合运算、负指数幂、零指数幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.21、(1);(2);(3),,理由见解析【分析】(1)将3拆分为2+1,再根据完全平方公式和二次根式化简即可求解;

(2)将4拆分为3+1,再根据完全平方公式和二次根式化简即可求解;

(3)利用二次根式的性质结合完全平方公式直接化简得出即可.【题目详解】解:(1)==;(2);(3)m+n=a,mn=b.理由:∵,∴,∴m+n+2=a+2,∴m+n=a,mn=b【题目点拨】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.22、(1);(2)1.【分析】已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.【题目详解】解:(1)∵,

∴,

∴,

∴,,

∴,,

(2)∵是等腰三角形,∴底边长为3或6,由三角形三边关系可知,底边长为3,

∴的周长为,

即的周长为1.【题目点拨】此题考查了因式分解的应用,三角形三边关系的应用,熟练掌握完全平方公式是解本题的关键.23、,【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a的值代入计算即可.【题目详解】解:÷(a+2﹣)=÷(﹣)=÷=•=∵a≠±3且a≠2,∴a=0.则原式=.【题目点拨】本题主要考查了分式的化简求值,先把分式化简,再把分式中未知数对应的值代入求出分式的值.关键是掌握在化简过程中的运算顺序和法则,注意运算的结果要化成最简分式或整式.24、(1)40°;(2)△ABC是等腰三角形.证明见解析.【解题分析】试题分析:(1)由由三角形外角的性质,可求得∠BAD的度数,根据等角对等边,可得AD=BD;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.(1)∵∠ADC=∠B+∠BAD,而∠ADC=80°,∠B=40°,∴∠BAD=80°-40°=40°,∴∠B=∠BAD,∴AD=BD.(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.25、(1)24;40;(2)线段AB的表达式为:y=40t(40≤t≤60)【解题分析】分析:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;

(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.详解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论