江苏省盐城市大丰2024届数学八上期末调研模拟试题含解析_第1页
江苏省盐城市大丰2024届数学八上期末调研模拟试题含解析_第2页
江苏省盐城市大丰2024届数学八上期末调研模拟试题含解析_第3页
江苏省盐城市大丰2024届数学八上期末调研模拟试题含解析_第4页
江苏省盐城市大丰2024届数学八上期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市大丰2024届数学八上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对2.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.83.若把分式中的都扩大倍,则该分式的值()A.不变 B.扩大倍 C.缩小倍 D.扩大倍4.已知线段,,线段与、构成三角形,则线段的长度的范围是()A. B. C. D.无法确定5.下列各分式中,最简分式是()A. B. C. D.6.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度7.下列式子可以用平方差公式计算的是()A. B.C. D.8.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例9.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个10.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE二、填空题(每小题3分,共24分)11.若为三角形的三边,且满足,第三边为偶数,则=__________.12.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________13.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.14.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是______________.15.分解因式:ax2-a=______.16.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).17.计算:=.18.使分式有意义的x的取值范围是_____.三、解答题(共66分)19.(10分)如图,等腰中,,点是上一动点,点在的延长线上,且,平分交于,连.(1)如图1,求证:;(2)如图2,当时,求证:.20.(6分)寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?21.(6分)解方程组(1)(2)22.(8分)如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.23.(8分)计算①②24.(8分)如图,在平面直角坐标系中,点坐标为,点是轴正半轴上一点,且,点是轴上位于点右侧的一个动点,设点的坐标为.(1)点的坐标为___________;(2)当是等腰三角形时,求点的坐标;(3)如图2,过点作交线段于点,连接,若点关于直线的对称点为,当点恰好落在直线上时,_____________.(直接写出答案)25.(10分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式26.(10分)先化简再求值:,其中.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先利用SAS证出△ABD≌△CDB,从而得出AD=CB,再利用SSS证出△ABC≌△CDA,从而得出∠ABO=∠CDO,最后利用AAS证出△ABO≌△CDO,即可得出结论.【题目详解】解:在△ABD和△CDB中∴△ABD≌△CDB∴AD=CB在△ABC和△CDA中∴△ABC≌△CDA∴∠ABO=∠CDO在△ABO和△CDO中∴△ABO≌△CDO共有3对全等三角形故选C.【题目点拨】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.2、D【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【题目详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【题目点拨】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.3、A【分析】当分式中x和y同时扩大4倍,得到,根据分式的基本性质得到,则得到分式的值不变.【题目详解】分式中x和y同时扩大4倍,则原分式变形为,故分式的值不变.故选A.【题目点拨】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.4、C【分析】根据三角形的三边关系定理“任意两边之和大于第三边,任意两边之差小于第三边”即可得到的取值范围.【题目详解】∵,,线段与、构成三角形∴∴故选:C【题目点拨】考查了三角形三边关系定理,此类求三角形第三边的范围的题目,实际上就是根据三边关系列出不等式,然后解不等式即可.5、A【分析】根据最简分式的标准:分子,分母中不含有公因式,不能再约分逐一判断即可.【题目详解】的分子、分母都不能再分解,且不能约分,是最简分式,故A选项符合题意.=m-n,故B选项不符合题意·,=,故C选项不符合题意·,=,故D选项不符合题意·,故选A.【题目点拨】本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.最简分式的标准:分子,分母中不含有公因式,不能再约分,熟练掌握最简分式的标准是解题关键.6、C【题目详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.7、D【分析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【题目详解】A、两个都是相同的项,不符合平方差公式的要求;

B、不存在相同的项,不符合平方差公式的要求;

C、两个都互为相反数的项,不符合平方差公式的要求;

D、3b是相同的项,互为相反项是2a与-2a,符合平方差公式的要求.

故选:D.【题目点拨】此题考查平方差公式,熟记公式结构是解题的关键.运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8、B【题目详解】解:设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.9、D【解题分析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.10、D【解题分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【题目详解】解:如图:A,根据SAS即可推出△ABC≌△DEF,;B.根据ASA即可推出△ABC≌△DEFC.根据AAS即可推出△ABC≌△DEF;D,不能推出△ABC≌△DEF;故选D.【题目点拨】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二、填空题(每小题3分,共24分)11、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【题目详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【题目点拨】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.12、1.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【题目详解】解:将长方体展开,连接A、B,

根据两点之间线段最短,

(1)如图,BD=10+5=15,AD=20,

由勾股定理得:AB====1.(2)如图,BC=5,AC=20+10=30,

由勾股定理得,AB====5.

(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:

∵长方体的宽为10,高为20,点B离点C的距离是5,

∴BD=CD+BC=20+5=1,AD=10,

在直角三角形ABD中,根据勾股定理得:

∴AB===5;

由于1<5<5,故答案为1.【题目点拨】本题考查两点之间线段最短,关键是将长方体展开,根据两点之间线段最短,运用勾股定理解答.13、169或1【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【题目详解】分两种情况:

①当5和12为直角边长时,

由勾股定理得:第三边长的平方,即斜边长的平方;

②12为斜边长时,

由勾股定理得:第三边长的平方;

综上所述:第三边长的平方是169或1;

故答案为:169或1.【题目点拨】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.14、xy=z【解题分析】试题分析:观察数列可发现所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x、y、z表示这列数中的连续三个数,则x、y、z满足的关系式是xy=z.考点:规律探究题.15、【解题分析】先提公因式,再套用平方差公式.【题目详解】ax2-a=a(x2-1)=故答案为:【题目点拨】掌握因式分解的一般方法:提公因式法,公式法.16、真命题【分析】根据三角形内角和为180°进行判断即可.【题目详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【题目点拨】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17、1.【解题分析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.18、x≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【题目详解】解:∵分式有意义,∴x+1≠0,故x≠﹣1.故答案为:x≠﹣1.【题目点拨】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)根据题意,通过证明,再由等腰三角形的性质即可得解;(2)根据题意,在FB上截取,连接AM,通过证明,再由等边三角形的判定及性质进行证明即可得解.【题目详解】(1)∵AF平分∠CAE,∴,∵,∴,在和中,,∴,∴.∵,∴,∴.(2)如下图,在FB上截取,连接AM.∵,∴,,在和中,,∴,∴,.∵,∴是等边三角形,∴,∴,∵,∴为等边三角形,∴,∵,∴,即.【题目点拨】本题主要考查了三角形全等的判定及等边三角形的判定及性质,熟练掌握相关证明方法是解决本题的关键.20、购买一个足球50元,一个篮球80元【分析】设购买一个足球需要x元,购买一个篮球需要y元,然后根据题意,列出二元一次方程组即可求出结论.【题目详解】解:设购买一个足球需要x元,购买一个篮球需要y元,根据题意得解得,∴购买一个足球需要50元,购买一个篮球需要80元.【题目点拨】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.21、(1);(2)【解题分析】(1)先用①+②算出x,再带入求y即可;(2)先用②×2-①算出x,再带入求y即可.【题目详解】(1)①+②,得x=3,把x=3代入②得:y-3=2,解得:y=5,所以原方程组的解为:;(2)整理得:②×2-①得:9x=-6,解得:x=,把x=代入①得:-+2y=2,解得:y=所以方程组的解为:【题目点拨】本题考查的是二元一次方程组,熟练掌握二元一次方程组是解题的关键.22、(1)3;(2)i)y=t﹣2;ii)s=或..【分析】(1)根据以及直角三角形斜边中线定理可得点C是AB的中点,即AC=AB,求出点C的坐标和AB的长度,根据AC=AB即可求出线段AC的长度.(2)i)设s、t的表达式为:①s=kt+b,当t=DN=时,求出点(,2);②当t=OD=时,求出点(,6);将点(,2)和点(,6)代入s=kt+b即可解得函数的表达式.ii)分两种情况进行讨论:①当MN∥OC时,如图1;②当MN∥OF时,如图2,利用特殊三角函数值求解即可.【题目详解】(1)A、B、C的坐标分别为:(0,3)、(3,0);OC=BC,则点C是AB的中点,则点C的坐标为:(,);故AC=AB=6=3;(2)点A、B、C的坐标分别为:(0,3)、(3,0)、(,);点D、E、G的坐标分别为:(﹣,0)、(﹣,4)、(2,1);i)设s、t的表达式为:s=kt+b,当t=DN=时,s=EM=EA=2,即点(,2);当t=OD=时,s=EG=6,即点(,6);将点(,2)和点(,6)代入s=kt+b并解得:函数的表达式为:y=t﹣2…①;ii)直线AB的倾斜角∠ABO=α=30°,EB=8,BD=4,DE=4,EM=s、DN=t,①当MN∥OC时,如图1,则∠MNB=∠COB=∠CBO=α=30°,MN=BM=BE﹣EM=8﹣s,NH=BN=(BD﹣DN)=(4﹣t),cos∠MNH==…②;联立①②并解得:s=;②当MN∥OF时,如图2,故点M作MG⊥ED角ED于点G,作NH⊥AG于点H,作AR⊥ED于点R,则∠HNM=∠RAE=∠EBD=α=30°,HN=GD=ED﹣EG=4﹣EMcos30°=4﹣s,MH=MG﹣GH=MEcos30°﹣t=s﹣t,tanα==…③;联立①③并解得:s=;从图象看MN不可能平行于BC;综上,s=或.【题目点拨】本题考查了直线解析式的动点问题,掌握直角三角形斜边中线定理、两点之间的距离公式、直线解析式的解法、平行线的性质、特殊三角函数值是解题的关键.23、①;②【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【题目详解】解:①原式==;②原式==.【题目点拨】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.24、(1);(2)或或;(3)【分析】(1)根据勾股定理可以求出AO的长,则可得出A的坐标;(2)分三种情况讨论等腰三角形的情况,得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论