版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市万载中学2023年高三下学期质量考评(八)数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或3.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324 B.522 C.535 D.5784.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.5.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A. B. C. D.6.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A. B.C. D.7.如果,那么下列不等式成立的是()A. B.C. D.8.已知是虚数单位,则()A. B. C. D.9.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为()A. B. C. D.10.设全集,集合,,则()A. B. C. D.11.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A. B. C. D.12.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于二、填空题:本题共4小题,每小题5分,共20分。13.执行右边的程序框图,输出的的值为.14.函数的图像如图所示,则该函数的最小正周期为________.15.已知实数,对任意,有,且,则______.16.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,均为正数,且.证明:(1);(2).18.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.19.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.(1)设抛掷4次的得分为,求变量的分布列和数学期望.(2)当游戏得分为时,游戏停止,记得分的概率和为.①求;②当时,记,证明:数列为常数列,数列为等比数列.20.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)21.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.22.(10分)已知椭圆C的离心率为且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
作出韦恩图,数形结合,即可得出结论.【详解】如图所示,,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.2、C【解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.3、D【解析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.4、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.5、B【解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.6、B【解析】
根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,,其图像关于直线对称,对满足的,,有,∴.再根据其图像关于直线对称,可得,.∴,∴.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.7、D【解析】
利用函数的单调性、不等式的基本性质即可得出.【详解】∵,∴,,,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.8、B【解析】
根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.9、B【解析】
根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人:将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.10、D【解析】
求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于故集合或故集合故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.11、B【解析】如图,已知,,
∴,解得
,∴,解得
.∴折断后的竹干高为4.55尺故选B.12、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】初始条件成立方;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.14、【解析】
根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可.【详解】解:由,得,,,则,,,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键.15、-1【解析】
由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解.【详解】由,且,则,又,所以,令得:,所以,故答案为:.【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平.16、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】
(1)由进行变换,得到,两边开方并化简,证得不等式成立.(2)将化为,然后利用基本不等式,证得不等式成立.【详解】(1),两边加上得,即,当且仅当时取等号,∴.(2).当且仅当时取等号.【点睛】本小题主要考查利用基本不等式证明不等式成立,考查化归与转化的数学思想方法,属于中档题.18、(1);(2)分布列见解析,期望为.【解析】
(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望.【详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,∴;(2)的所有可能值分别为,,,,,∴的分布列为:0123【点睛】本题考查古典概型,考查随机变量的概率分布列和数学期望.解题关键是掌握相互独立事件同时发生的概率计算公式.19、(1)分布列见解析,数学期望为6;(2)①;②证明见解析【解析】
(1)变量的所有可能取值为4,5,6,7,8,分别求出对应的概率,进而可求出变量的分布列和数学期望;(2)①得2分只需要抛掷一次正面向上或两次反面向上,分别求出两种情况的概率,进而可求得;②得分分两种情况,第一种为得分后抛掷一次正面向上,第二种为得分后抛掷一次反面向上,可知当且时,,结合,可推出,从而可证明数列为常数列;结合,可推出,进而可证明数列为等比数列.【详解】(1)变量的所有可能取值为4,5,6,7,8.每次抛掷一次硬币,正面向上的概率为,反面向上的概率也为,则,.所以变量的分布列为:45678故变量的数学期望为.(2)①得2分只需要抛掷一次正面向上或两次反面向上,概率的和为.②得分分两种情况,第一种为得分后抛掷一次正面向上,第二种为得分后抛掷一次反面向上,故且时,有,则时,,所以,故数列为常数列;又,,所以数列为等比数列.【点睛】本题考查离散型随机变量的分布列及数学期望,考查常数列及等比数列的证明,考查学生的计算求解能力与推理论证能力,属于中档题.20、(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】
(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年城市中的绿桥环境与美的结合
- 2026春招:药剂师题库及答案
- 2026年海洋石油平台的电气防爆技术
- 2026春招:小米面试题及答案
- 贴瓷砖工安全培训教育课件
- 医院保洁人员服务规范
- 货物升降机安全培训课件
- 2026年广西电力职业技术学院高职单招职业适应性测试备考题库带答案解析
- 临床思维培养与疾病诊断技巧
- 医疗互联网保险市场前景分析
- 黑龙江省哈尔滨市第九中学校2024-2025学年高二上学期期末考试生物试题 含解析
- 脑卒中治疗护理新进展
- 辽宁省部分重点中学协作体2025届高三高考模拟考试数学试题含答案
- erp系统维护合同范例
- 国家开放大学电大《国际私法》形考任务1-5题库及答案
- 仓储人员的安全培训
- 新教材高中数学第八章立体几何初步8.4.1平面课件
- 智慧农业中的智能灌溉技术
- 瑜伽店长培训方案
- 标识牌单元工程施工质量验收评定表
- QSB知识培训资料重点
评论
0/150
提交评论