版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第12页(共12页)2019-2020学年天津市耀华中学高一(上)第一次段考数学试卷一、选择题:本大题共8小题,每小题4分,共32分,在每小题的4个选项中,只有项是符合题目要求的,将答案涂在答题卡上.1.(4分)设集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(∁UT)=()A.{1,2,4} B.{1,2,3,4,5,7} C.{1,2} D.{1,2,4,5,6,8}2.(4分)命题“∃x∈R,x2+2x+2≤0”的否定是()A.∃x∈R,x2+2x+2>0 B.∃x∈R,x2+2x+2≥0 C.∀x∈R,x2+2x+2>0 D.∀x∈R,x2+2x+2≤03.(4分)若﹣2x2+5x﹣2>0,则等于()A.4x﹣5 B.﹣3 C.3 D.5﹣4x4.(4分)已知条件p:x≤1,条件q:,则¬p是q的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件5.(4分)集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的真子集个数为()A.31 B.63 C.32 D.646.(4分)设a>1>b>﹣1,则下列不等式中恒成立的是()A. B. C.a>b2 D.a2>2b7.(4分)如果存在x∈R,使得不等式<1成立,则实数m的取值范围是()A.(1,3) B.(﹣∞,+∞) C.(∞,1)∪(2,+∞) D.(﹣∞,3)8.(4分)设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为()A.2 B.4 C.8 D.16二、填空题;本大题共7小题,每小题4分,共28分,将答案填写在答题纸上.9.(4分)已知集合A={1,2,m3},B={1,m},A∩B=B,则m=.10.(4分)若集合A={x|ax2+2x+1=0,a∈R}至多有一个元素,则a的取值范围是.11.(4分)不等式≥3的解集是.12.(4分)若<0,给出下列不等式:①;②|a|+b>0;③a﹣;④﹣ab>﹣a2.其中错误的不等式是(只填序号).13.(4分)已知正数x,y满足x+2y=2,则的最小值为.14.(4分)不等式ax2+2x+c>0的解集为(﹣,),则不等式﹣cx2+2x﹣a>0的解集为.15.(4分)已知xy>0,x+y=3,则+的最小值为.三、解答题:本大题共4小题,共40分,将解题过程及答案填写在答题纸上.16.(10分)已知集合A={x|a﹣1<x<2a+3},B={x|﹣2≤x≤4},全集U=R.(1)当a=2时,求A∪B及(∁UA)∩(∁UB);(2)若A∩B=A,求实数a的取值范围.17.(10分)设集合A={x|x≤﹣2或x≥3},关于x的不等式(x﹣2a)(x+a)>0的解集为B(其中a<0).(1)求集合B;(2)设p:x∈A,q:x∈B,且¬p是¬q的充分不必要条件,求a的取值范围.18.(12分)已知关于的x不等式(ax﹣1)(x+1)>0.(1)若此不等式的解集为{x|﹣1},求实数a的值;(2)若a∈R,解这个关于x的不等式;(3)∀1≤x≤3,(ax﹣1)(x+1)>2ax﹣a﹣1恒成立,求a的取值范围.19.(8分)正实数a,b,c满足a2﹣3ab+4b2﹣c=0当最大值时,求最大值.
2019-2020学年天津市耀华中学高一(上)第一次段考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分,在每小题的4个选项中,只有项是符合题目要求的,将答案涂在答题卡上.1.(4分)设集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(∁UT)=()A.{1,2,4} B.{1,2,3,4,5,7} C.{1,2} D.{1,2,4,5,6,8}【分析】根据集合补集和交集的运算规则直接求解.【解答】解:因为U={1,2,3,4,5,6,7,8},∁UT={1,2,4,6,8},所以S∩(∁UT)={1,2,4},故选:A.【点评】本题考查集合的基本运算,属简单题.2.(4分)命题“∃x∈R,x2+2x+2≤0”的否定是()A.∃x∈R,x2+2x+2>0 B.∃x∈R,x2+2x+2≥0 C.∀x∈R,x2+2x+2>0 D.∀x∈R,x2+2x+2≤0【分析】根据特称命题的否定的全称命题进行求解即可.【解答】解:∵“∃x∈R,x2+2x+2≤0”是特称命题,∴根据特称命题的否定的全称命题,得到命题的否定是:∀x∈R,x2+2x+2>0.故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.3.(4分)若﹣2x2+5x﹣2>0,则等于()A.4x﹣5 B.﹣3 C.3 D.5﹣4x【分析】先由﹣2x2+5x﹣2>0得出x的取值范围,再将化简成:|2x﹣1|+2|x﹣2|的形式,最后利用绝对值的定义化简即得.【解答】解:由﹣2x2+5x﹣2>0得:<x<2.∴则=|2x﹣1|+2|x﹣2|=2x﹣1+2(2﹣x)=3.故选:C.【点评】本小题主要考查函数的值、根式、不等式的解法等基础知识,考查运算求解能力,属于基础题.4.(4分)已知条件p:x≤1,条件q:,则¬p是q的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【分析】由题意条件p:x≤1,写出其﹣p中x的范围,将条件q:,由分式不等式的解法解出x的范围,然后判断﹣p是q之间能否互推,从而进行判断;【解答】解:∵条件p:x≤1,∴¬p:x>1;∵条件q:,∴<0,解得x>1或x<0,∵x>1⇒x>1或x<0,反之则不能;∴﹣p⇒q,q推不出﹣p,∴﹣p是q的充分而不必要条件,故选:A.【点评】此题主要考查逻辑关系的条件和分式方程的求解问题,解题时按部就班的求解,此题思路很明显就是求出﹣p和q,各自x的范围.5.(4分)集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的真子集个数为()A.31 B.63 C.32 D.64【分析】根据条件即可求出集合P*Q的元素个数,从而可得出集合P*Q的真子集个数.【解答】解:根据题意得,P*Q的元素个数为个,∴P*Q的真子集个数为26﹣1=63个.故选:B.【点评】考查描述法、列举法的定义,元素与集合的关系,分步计数原理的应用,集合真子集个数的计算公式.6.(4分)设a>1>b>﹣1,则下列不等式中恒成立的是()A. B. C.a>b2 D.a2>2b【分析】通过举反例说明选项A,B,D错误,通过不等式的性质判断出C正确.【解答】解:对于A,例如a=2,b=此时满足a>1>b>﹣1但故A错对于B,例如a=2,b=此时满足a>1>b>﹣1但故B错对于C,∵﹣1<b<1∴0≤b2<1∵a>1∴a>b2故C正确对于D,例如a=此时满足a>1>b>﹣1,a2<2b故D错故选:C.【点评】想说明一个命题是假命题,常用举反例的方法加以论证.7.(4分)如果存在x∈R,使得不等式<1成立,则实数m的取值范围是()A.(1,3) B.(﹣∞,+∞) C.(∞,1)∪(2,+∞) D.(﹣∞,3)【分析】由已知结合4x2+6x+3>0成立,可转化为二次不等式的成立,结合二次函数的性质可求.【解答】解:由<1成立,又4x2+6x+3>0恒成立,∴mx2+2mx+m<4x2+6x+3,整理可得,(m﹣4)x2+(2m﹣6)x+m﹣3<0成立,①当m=4时,2x+1<0可得x<﹣成立;②m≠4时,(1)m<4时,存在x∈R,使得(m﹣4)x2+(2m﹣6)x+m﹣3<0成立,符合题意,(2)m>4时,则,解可得,m>4.综上可得,m的范围为R.故选:B.【点评】本题主要考查了二次不等式的成立问题求解参数,体现了分类讨论思想的应用.8.(4分)设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为()A.2 B.4 C.8 D.16【分析】不等式+≥m恒成立,转化为求+的最小值,可得m的最大值.将分母转化为整数,设y﹣1=b,则y=b+1,令2x﹣1=a,x=(a+1),利用基本不等式的性质即可得出.【解答】解:设y﹣1=b,则y=b+1,令2x﹣1=a,x=(a+1),a>0,b>0.那么:+==2(当且仅当a=b=1即x=1,y=2时取等号.∴+的最小值为8,则m的最大值为8.故选:C.【点评】本题考查了基本不等式的性质的运用解决恒成立的问题,利用了换元法转化求解,多次使用基本不等式式解决问题的关键,属于中档题.二、填空题;本大题共7小题,每小题4分,共28分,将答案填写在答题纸上.9.(4分)已知集合A={1,2,m3},B={1,m},A∩B=B,则m=2或0或﹣1.【分析】根据A∩B=B即可得出B⊆A,从而得出m=2或m=m3,解出m的值,并检验是否满足题意即可.【解答】解:∵A∩B=B,∴B⊆A,∴m=2或m=m3,∴m=2或m=0或m=﹣1或m=1,∵m=1时,不满足集合元素的互异性,∴m=2或0或﹣1.故答案为:2或0或﹣1.【点评】考查列举法的定义,交集的定义及运算,以及子集的定义,集合元素的互异性.10.(4分)若集合A={x|ax2+2x+1=0,a∈R}至多有一个元素,则a的取值范围是{a|a=0或a≥1}.【分析】由集合A={x|ax2+2x+1=0,a∈R}至多有一个元素,得到a=0或,由此能求出a的取值范围.【解答】解:∵集合A={x|ax2+2x+1=0,a∈R}至多有一个元素,∴a=0或,解得a=0或a≥1,∴a的取值范围是{a|a=0或a≥1}.故答案为:{a|a=0或a≥1}.【点评】本题考查实数的取值范围的求法,考查集合、一元二次函数的性质等基础知识,考查运算求解能力,是基础题.11.(4分)不等式≥3的解集是[,2).【分析】由≥3可得,﹣3≥0,整理后即可求解.【解答】解:由≥3可得,﹣3≥0,整理可得,,解可得,,故答案为:[,2).【点评】本题主要考查了分式不等式的解法的应用,属于基础试题.12.(4分)若<0,给出下列不等式:①;②|a|+b>0;③a﹣;④﹣ab>﹣a2.其中错误的不等式是②(只填序号).【分析】若<0,可得b<a<0,利用不等式的基本性质即可判断出下列不等式的正误.【解答】解:若<0,∴b<a<0,给出下列不等式:①∵<0<,∴正确;②由于|a|+b<0,因此不正确;③∵<0,∴﹣>﹣,又a>b,∴a﹣,正确;④由b<a<0,∴﹣ab>﹣a2,正确.其中错误的不等式是②.故答案为:②.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.13.(4分)已知正数x,y满足x+2y=2,则的最小值为9.【分析】利用“乘1法”和基本不等式即可得出.【解答】解:∵正数x,y满足x+2y=2,∴===9,当且仅当x=4y=时取等号.∴的最小值为9.故答案为:9.【点评】本题考查了“乘1法”和基本不等式的性质,属于基础题.14.(4分)不等式ax2+2x+c>0的解集为(﹣,),则不等式﹣cx2+2x﹣a>0的解集为(﹣2,3).【分析】根据不等式的解集求出a,c的值,从而求出不等式﹣cx2+2x﹣a>0的解集即可.【解答】解:∵不等式ax2+2x+c>0的解集为(﹣,),∴﹣=﹣+,=﹣,解得:a=﹣12,c=2,故不等式﹣cx2+2x﹣a>0即﹣2x2+2x+12>0,故x2﹣x﹣6<0,解得:﹣2<x<3,故不等式的解集是:(﹣2,3),故答案为:(﹣2,3).【点评】本题考查了解二次不等式问题,考查转化思想,是一道基础题.15.(4分)已知xy>0,x+y=3,则+的最小值为.【分析】由题意可得x>0,y>0,由柯西不等式可得[(y+1)+(x+2)](+)≥[•+•]2,即可得到所求最小值.【解答】解:xy>0,x+y=3,可得x>0,y>0,由柯西不等式可得[(y+1)+(x+2)](+)≥[•+•]2=(x+y)2=9,可得+≥=,当=,即有x=,y=时,+的最小值为,故答案为:.【点评】本题考查柯西不等式的运用:求最值,考查化简变形能力、以及运算能力,属于中档题.三、解答题:本大题共4小题,共40分,将解题过程及答案填写在答题纸上.16.(10分)已知集合A={x|a﹣1<x<2a+3},B={x|﹣2≤x≤4},全集U=R.(1)当a=2时,求A∪B及(∁UA)∩(∁UB);(2)若A∩B=A,求实数a的取值范围.【分析】(1)求出a=2时的集合A,再根据并集和补集、交集的定义计算即可;(2)根据A∩B=A得出A⊆B,再讨论A=∅和A≠∅时,从而求出a的取值范围.【解答】解:(1)a=2时,集合A={x|1<x<7},B={x|﹣2≤x≤4},∴A∪B={x|﹣2≤x<7};又U=R,∴(∁UA)∩(∁UB)=∁U(A∪B)={x|x<﹣2或x≥7};(2)若A∩B=A,则A⊆B,当a﹣1≥2a+3,即a≤﹣4时,A=∅,满足题意;当a>﹣4时,应满足,解得﹣1≤a≤;综上知,实数a的取值范围是(﹣∞,﹣4]∪[﹣1,].【点评】本题考查了集合的化简与运算问题,也考查了分类讨论思想,是基础题.17.(10分)设集合A={x|x≤﹣2或x≥3},关于x的不等式(x﹣2a)(x+a)>0的解集为B(其中a<0).(1)求集合B;(2)设p:x∈A,q:x∈B,且¬p是¬q的充分不必要条件,求a的取值范围.【分析】(1)关于x的不等式(x﹣2a)(x+a)>0的解集为B(其中a<0).利用一元二次不等式的解法即可得出.(2)设p:x∈A,q:x∈B,且¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,进而得出结论.【解答】解:(1)关于x的不等式(x﹣2a)(x+a)>0的解集为B(其中a<0).解得:x>﹣a,或x<2a.∴集合B=(﹣∞,2a)∪(﹣a,+∞),(a<0).(2)设p:x∈A,q:x∈B,且¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴,等号不能同时成立.解得a≤﹣3.∴a的取值范围是(﹣∞,﹣3].【点评】本题考查了简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于基础题.18.(12分)已知关于的x不等式(ax﹣1)(x+1)>0.(1)若此不等式的解集为{x|﹣1},求实数a的值;(2)若a∈R,解这个关于x的不等式;(3)∀1≤x≤3,(ax﹣1)(x+1)>2ax﹣a﹣1恒成立,求a的取值范围.【分析】(1)由题意可得﹣1,﹣为方程(ax﹣1)(x+1)=0(a<0)的两根,由代入法可得所求值;(2)讨论a=0,a>0,a<0,又分a=﹣1,a<﹣1,﹣1<a<0时,由二次不等式的解法,即可得到所求解集;(3)由题意可得a(x2﹣x+1)>x在1≤x≤3恒成立,可得a>在1≤x≤3恒成立,由f(x)=,1≤x≤3,结合对勾函数的单调性可得f(x)的最大值,可得a的范围.【解答】解:(1)(ax﹣1)(x+1)>0的解集为{x|﹣1},可得﹣1,﹣为方程(ax﹣1)(x+1)=0(a<0)的两根,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混凝土浇筑工安全生产基础知识评优考核试卷含答案
- 腈纶聚合操作工测试验证强化考核试卷含答案
- 输气工岗前纪律考核试卷含答案
- 2024年湖南信息学院辅导员考试笔试真题汇编附答案
- 2024年湖北省经济管理干部学院辅导员招聘考试真题汇编附答案
- 2024年石屏县事业单位联考招聘考试历年真题附答案
- 2025《《行测》》试题库汇编
- 2024年莱芜市特岗教师笔试真题题库附答案
- 2024年白城医学高等专科学校辅导员考试笔试真题汇编附答案
- 2024年重庆数字产业职业技术学院马克思主义基本原理概论期末考试题附答案
- 《底层逻辑》刘润
- 甲状腺手术甲状旁腺保护
- 幼儿园《企鹅遇险记》原绘本故事
- 多波多分量地震勘探规范
- (高清版)TDT 1057-2020 国土调查数据库标准
- 曼娜回忆录的小说全文
- 管道工培训课件
- 2024版未来食品加工技术趋势:智能化与自动化培训课件
- 无人机测绘操控员培训计划及大纲
- 父亲给孩子的一封信高中生(五篇)
- 动角问题专项训练(30道)
评论
0/150
提交评论