版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题目:机器学习与模式识别学号:02115***姓名:*** MachineLearningandPatternRecognitionAbstractRecently,machinelearninghasdevelopedrapidlyininformationfield.Also,ithasacloserelationshipwithpatternrecognition.Machininglearninghasbeenappliedtopatternrecognitionsuccessfully.Therefore,thepaperdescribesthebasiccharacteristicsofmachinelearningandpatternrecognition,whichincludestheconcepts,development,applicationandclassification.Italsoprovidesanapplicationperspectiveforunderstandingtheconceptsofmachiningandpatternrecognition.Keywords:MachineLearningPatternRecognition0.IntroductionMachinelearningisoneofthecoreproblemsofartificialintelligenceresearch.Itsapplicationhasbeenthroughoutallbranchesofartificialintelligence,suchasexpertsystems,automatedreasoninginthefieldofnaturallanguageunderstanding,patternrecognition,computervision,intelligentrobotics.Justasitsnameimplies,Machinelearningistoletthecomputertolearnsomewaytoimproveitsperformance.Patternrecognitioncanbeseenassomethingwhichcandividedifferentobjectsintodifferentcategories.Humanscandeepentheirunderstandingofthingsthroughcontinuouslearning,similarlythepatternrecognitionsystembasedonsimulatinghumanintelligencealsoneedstoimproveitsclassificationperformancethroughmachinelearningalgorithmimprovements,sothecontactbetweenmachinelearningandpatternrecognitionisgettingcloserandcloser.Thisarticlewillexplainthebasicconceptsofmachinelearningandpatternrecognition,patternrecognitionanalysisinseveralmachinelearningalgorithms.1.MachineLearning1.1ThedefinitionofmachinelearningCurrently,theaccuratedefinitionofmachinelearning:forcertainassignmentTandperformancemetricsP,ifacomputerprogramtomeasuretheperformanceofPandalongwiththeexperienceofself-improvementonT,thenwecallthecomputerprogramislearningfromexperienceE.1.2TheworkingmechanismofthemachinelearningsystemTheenvironmentprovidescertaininformationtothelearningpartsofthesystem,thenthelearningpartusesthisinformationtomodifyitsknowledgebasetoenhancetheperformanceofexecutionpart;Theexecutiondoitsworkaccordingtheknowledgebase,alsobringbacktheacquiredinformationtolearningpart.Theprocesscanbeseenasacertainprocessthatthemachinelearningsystemacquireknowledgeautomaticallywithinformationwhichareprovidedbyinternalandexternalenvironment.EnvironmentLearningpartKnowledgebaseExecutionpart1.3ThedesignofthemachinelearningsystemTherearemainlytwopartsthatneedbetakenintoconsiderationwhendesigningaperfectmachinelearningsystem:Modelselectionanddesign,Learningalgorithmselectionanddesign.Differentmodelsdeterminedifferentobjectivefunctionsanddifferentlearningmechanisms.Thecomplexityandcapacityofalgorithmdeterminethecapacityandefficiencyofthelearningsystem.Alsothesizeoftrainingsamplesandfeatureselectionproblemarethekeyfactorswhichwillconstrainmachinelearningsystemperformance.2.MachinelearningalgorithminpatternrecognitionPatternrecognitionmeansthatweshouldanalyzeperceptionsignal.Itisaprocessofidentificationandinterpretation.Wecandrawapicturetodescribethisprocess.获取数据预处理特征生成特征选择模式分类后处理机器学习Thecoreissueofmachinelearningissearchingproblems.Asfordifferentapplicationmodels,theresearchershavedesignedsomedifferentsearchingalgorithms.Currentlyinthefieldofpatternrecognition,weoftenusegeneticalgorithms,neuralnetworks,supportvectormachines,k-nearestneighbormethodandothermachinelearningalgorithms.2.1GeneticalgorithmCharacteristicdimensionisamajorprobleminmachinelearning,becausethecharacteristicspresentedfromcertainmodelhavedifferentweightsinreflectingthenatureofthings.Butsomeshowednosignificantcontributiontothecatagories,evenredundant,sothefeatureselectionprocessisverycritical.Geneticalgorithmcansolvethisproblemtosomeextendasaoptimizationalgorithm.Geneticalgorithmnotonlycanchoosethefeaturethatnotonlyreflectstheoriginalinformation,butalsohaveasignificantimpactontheclassificationresults.TherearethreekindsofoperationinGA.Selection-reproduction,crossover,aswellasmutation.Weusuallydoasfollows:ChooseNchromosomesfrompopulationSinNseparatetimes.TheprobabilityofoneindividualbeingchosenisP(xi).ThecomputationalformulaofP(xi):Thereisachancethatthechromosomesofthetwoparentsarecopiedunmodifiedasoffspring,orrandomlyrecombined(crossover)toformoffspring.Alsothereisachancethatageneofachildischangedrandomly.Generallythechanceofmutationislow.GAhavefourbasicelementsfromthepresent:codingstrategies;settinginitialpopulation;designoffitnessfunction;geneticoperatorsdesign,chooseoperator,crossoveroperator,mutationoperator,andthesehavebeenaimportantpointsinimproving.2.2ArtificialneuralnetworksNeuralnetworkisanewtechnologyinthefieldofmachinelearning.Manypeoplehaveheardoftheword,butfewpeoplereallyunderstandwhatitis.Thebasicneuralnetworkfunctions,includingitsgeneralstructure,relatedterms,typesandapplications.Inpatternrecognitionapplications,aclassifierusinganeuralnetworkisdesignedbyarelativelysmallnumberofneuronsconnectedtogetheraccordingtocertainrulesofnetworksystem,andeachneuroninthenetworkhavethesamestructure.Neuronstypicallyexpressedasamultiple-input,single-outputnonlinearelements,itsstructurecanbedesignedlikethis:Asalinklearningalgorithm,neuralnetworkfeaturesare:parallelprocessingofinformation,storageanddistributionofstrongfaulttolerance;self-learning,self-organizationandself-applicability.Throughtraining,theneuralnetworkcanautomaticallyadjustitsnetworkconfigurationparameterstosimulatethenonlinearrelationshipbetweeninputandoutput,sowhenwegivethenetworksomeinputs,wecangettherightclassification.2.3SupportvectormachinesThesizeoftrainingsamplesinmachinelearningsysteminfluencetheabilityofgeneralizationlearningsystem.Inmachinelearning,supportvectormachines(SVMs,alsosupportvectornetworks)aresupervisedlearningmodelswithassociatedlearningalgorithmsthatanalyzedataandrecognizepatterns,usedforclassificationandregressionanalysis.Givenasetoftrainingexamples,eachmarkedasbelongingtooneoftwocategories,anSVMtrainingalgorithmbuildsamodelthatassignsnewexamplesintoonecategoryortheother,makingitanon-probabilisticbinarylinearclassifier.AnSVMmodelisarepresentationoftheexamplesaspointsinspace,mappedsothattheexamplesoftheseparatecategoriesaredividedbyacleargapthatisaswideaspossible.Newexamplesarethenmappedintothatsamespaceandpredictedtobelongtoacategorybasedonwhichsideofthegaptheyfallon.Inadditiontoperforminglinearclassification,SVMscanefficientlyperforma
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级数学参考答案
- 推广智能制造模式提升生产效率
- 飞彩头课件介绍
- 企业网络安全规范及流程设计
- 全球气候变化与应对方法
- 中国传统节日文化知识竞赛试题试卷及答案
- 2025年初级会计职称考试报名流程详解试题冲刺卷
- 高二劳动服务业技术实践评价试题及真题
- 2026年多位数运算应用题解答技巧及考点冲刺卷试题
- 农业生产与农产品质量安全手册
- 企业人力资源制度
- 2026年小红书38好心情小会招商方案
- 初中英语(完整版)连词and-or-but的用法练习题及答案
- 新房建房申请书
- 结直肠外科的发展历程解析
- 输液错误不良事件课件
- 锅炉的定期排污(定排)和连续排污(连排)区别
- 施工班组劳务分包合同
- 气管套管脱管的应急处理
- 1.1+中国的疆域- 八年级地理 (湘教版)
- 北京中医药大学东方学院教案
评论
0/150
提交评论