版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖北省鄂东南省级示范高中教育教学改革联盟数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为2,则()A.2 B.C. D.12.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.3.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°4.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.5.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.366.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.7.已知,,则()A. B.C. D.8.数列1,,,的一个通项公式可以是()A. B.C. D.9.已知数列满足,且,那()A.19 B.31C.52 D.10410.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.411.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数14.已知,,且,则的最小值为______.15.已知函数,则曲线在点处的切线方程为______.16.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,前7项和为(Ⅰ)求的通项公式(Ⅱ)设数列满足,求的前项和.18.(12分)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M满足,且直线的斜率之积等于(1)求C的方程;(2)过点的直线l交C于A,B两点,若,其中,证明:19.(12分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.20.(12分)已知数列的前项和,数列是各项均为正数的等比数列,其中,且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)抚州市为了了解学生的体能情况,从全市所有高一学生中按80:1的比例随机抽取200人进行一分钟跳绳次数测试,将所得数据整理后,分为组画出频率分布直方图如图所示,现一,二两组数据丢失,但知道第二组的频率是第一组的3倍(1)若次数在以上含次为优秀,试估计全市高一学生的优秀率是多少?全市优秀学生的人数约为多少?(2)求第一组、第二小组的频率是多少?并补齐频率分布直方图;(3)估计该全市高一学生跳绳次数的中位数和平均数?22.(10分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由双曲线的性质,直接表示离心率,求.【详解】由双曲线方程可知,因为,所以,解得:,又,所以.故选:D【点睛】本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题能力,属于中档题型,一般求双曲线离心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.构造法:根据条件,可构造出的齐次方程,通过等式两边同时除以,进而得到关于的方程.2、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.3、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D4、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.5、B【解析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【详解】甲最终获得冠军的概率,故选:B.6、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D7、C【解析】利用空间向量的坐标运算即可求解.【详解】因为,,所以,故选:C.8、A【解析】根据各项的分子和分母特征进行求解判断即可.【详解】因为,所以该数列的一个通项公式可以是;对于选项B:,所以本选项不符合要求;对于选项C:,所以本选项不符合要求;对于选项D:,所以本选项不符合要求,故选:A9、D【解析】根据等比数列的定义,结合等比数列的通项公式进行求解即可.【详解】因为,所以有,因此数列是公比的等比数列,因为,所以,故选:D10、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.11、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.12、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是202114、4【解析】利用“1”的妙用,运用基本不等式即可求解.【详解】∵,即,∴又∵,,∴,当且仅当且,即,时,等号成立,则的最小值为4.故答案为:.15、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.16、【解析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】(1)根据等差数列的求和公式可得,得,然后由已知可得公差,进而求出通项;(2)先明确=,为等差乘等比型通项故只需用错位相减法即可求得结论.解析:(Ⅰ)由,得因为所以(Ⅱ)18、(1)(2)证明见解析【解析】(1)由椭圆定义可得到,再利用斜率公式及直线的斜率之积等于,列出方程,化简对比系数可得;(2)分直线l的斜率为0和不为0两种情况讨论,利用可得到T在定直线上,且该直线是的中垂线即可得到证明.【小问1详解】因为C上的点M满足,所以C表示焦点在x轴上的椭圆,且,即,,所以,设,则,①所以直线的斜率,直线的斜率,由已知得,即,②由①②得,所以C的方程为【小问2详解】当直线l的斜率为0时,A与重合,B与重合,,,成立.当直线l的斜率不为0时,设l的方程为联立方程组,消x整理得所以,解得或设,则,由,得,所以设,由,得,所以,所以,所以点T在直线上,且,所以是等腰三角形,且,所以,综上,【点睛】关键点点晴:本题第二问突破点是证明T在定直线上,且该直线是的垂直平分线,从而得到,考查学生的数学运算能力,转化化归思想.19、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,结合证得,由此证得平面.(2)通过平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】如图,以为原点建立空间直角坐标系,可得,,,.(1)证明法一:因为,,,所以,,所以,,,平面,平面,所以平面.证明法二:因为平面,平面,所以,又因为,即,,平面,平面,所以平面.(2)由(1)知平面的一个法向量,设平面的法向量,又,,且所以所以平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1),;(2).【解析】(1)利用求出数列的通项,再求出等比数列的公比即得解;(2)求出,再利用错位相减法求解.【小问1详解】解:,.当时,,适合..设等比数列公比为,,,即,或(舍去),.【小问2详解】解:,,,上述两式相减,得,所以所以.21、(1)8640;(2)第一组频率为,第二组频率为.频率分布直方图见解析;(3)中位数为,均值为121.9【解析】(1)求出优秀的频率,计算出抽取的人员中优秀学生数后可得全体优秀学生数;(2)由频率和为1求得第一组、第二组频率,然后可补齐频率分布直方图;(3)在频率分布直方图中计算出频率对应的值即为中位数,用各组数据中点值乘以频率后相加得均值【详解】(1)由频率分布直方图,分数在120分以上的频率为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老机构年检管理协议
- 商场客流统计协议
- 2026年全国两会应知应会知识竞赛测试题库及答案
- 代收货款合作协议书格式范本条款
- 逆向物流退货处理补偿协议
- 导师计划合作协议内容
- PDA操作使用协议
- 关于医院医保自查自纠工作方案
- 2026年房地产开发项目协议
- 慢病防控中的疼痛管理策略
- 网络空间安全概论智慧树知到期末考试答案2024年
- 创伤失血性休克中国急诊专家共识(2023)解读课件
- 电气工程师生涯人物访谈报告
- 职位调动申请表模板
- 2022年内蒙古交通运输厅所属事业单位考试真题及答案
- 选词填空(试题)外研版英语五年级上册
- 露地胡萝卜秋季栽培
- 历年天津理工大学高数期末考试试卷及答案
- 妇产科学(第9版)第二章女性生殖系统解剖
- GB/T 9122-2000翻边环板式松套钢制管法兰
- GB/T 16895.6-2014低压电气装置第5-52部分:电气设备的选择和安装布线系统
评论
0/150
提交评论