版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年云南省玉溪市江川县高二数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值2.意大利数学家斐波那契,以兔子繁殖为例,引入“兔子数列”,,,,,,,,…,在实际生活中很多花朵的瓣数恰是斐波那契数列中的数,斐波那契数列在物理化学等领域也有着广泛的应用.已知斐波那契数列满足:,,,若,则等于()A. B.C. D.3.如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米 B.米C.米 D.米4.下面四个条件中,使成立的充分而不必要的条件是A. B.C. D.5.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.326.等比数列中,,,则()A. B.C. D.7.已知椭圆:的左、右焦点分别为、,为坐标原点,为椭圆上一点.与轴交于一点,,则椭圆C的离心率为()A. B.C. D.8.某研究所计划建设n个实验室,从第1实验室到第n实验室的建设费用依次构成等差数列,已知第7实验室比第2实验室的建设费用多15万元,第3实验室和第6实验室的建设费用共为61万元.现在总共有建设费用438万元,则该研究所最多可以建设的实验室个数是()A.10 B.11C.12 D.139.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.10.数列,,,,,中,有序实数对是()A. B.C. D.11.工业生产者出厂价格指数(PRoduceRPRiceIndexfoRIndustRialPRoducts,简称PPI)是反映工业企业产品第一次出售时的出厂价格的变化趋势和变动幅度,是反映某一时期生产领域价格变动情况的重要经济指标,也是制定有关经济政策和国民经济核算的重要依据.根据下面提供的我国2020年1月—2021年11月的工业生产者出厂价格指数的月度同比(将上一年同月作为基期进行对比的价格指数)和月度环比(将上月作为基期进行对比的价格指数)涨跌情况的折线图判断,以下结论正确的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月减小D.2021年1月—11月各月的PPI均高于2020年同期水平12.集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,,,若数列是递减数列,数列是递增数列,则______14.写出一个同时具有性质①②的函数___________.(不是常值函数),①为偶函数;②.15.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为__________16.如果圆锥的底面圆半径为1,母线长为2,则该圆锥的侧面积为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在数列中,,且.(1)求,,并证明数列是等比数列;(2)求的通项公式及前n项和.18.(12分)如图,在四棱锥中,底面为直角梯形,底面分别为的中点,(1)求证:平面平面;(2)求二面角的大小19.(12分)已知等差数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.20.(12分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值21.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,22.(10分)已知动点在椭圆:()上,,为椭圆左、右焦点.过点作轴的垂线,垂足为,点满足,且点的轨迹是过点的圆(1)求椭圆方程;(2)过点,分别作平行直线和,设交椭圆于点,,交椭圆于点,,求四边形的面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C2、A【解析】利用可化简得,由此可得.【详解】由得:,,即.故选:A.3、B【解析】以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,求出双曲线方程,数形结合即可求解.【详解】如图所示,以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,设双曲线标准方程为:(a>0),则顶点,,将A点代入双曲线方程得,,当水面下降6米后,,代入双曲线方程得,,∴水面宽:米.故选:B.4、A【解析】由,但无法得出,A满足;由、均无法得出,不满足“充分”;由,不满足“不必要”.考点:不等式性质、充分必要性.5、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C6、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D7、C【解析】由椭圆的性质可先求得,故可得,再由椭圆的定义得a,c的关系,故可得答案【详解】,,又,,则,,则,,由椭圆的定义得,,,故选:C8、C【解析】根据等差数列通项公式,列出方程组,求出的值,进而求出令根据题意令,即可求解.【详解】设第n实验室的建设费用为万元,其中,则为等差数列,设公差为d,则由题意可得,解得,则.令,即,解得,又,所以,,所以最多可以建设12个实验室.故选:C.9、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.10、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:11、D【解析】根据折线图中同比、环比的正负情况,结合各选项的描述判断正误.【详解】A:2020年前5个月PPI在逐月减小,错误;B:2020年各月同比为负值,即低于2019年同期水平,错误;C:2021年1月—11月各月的PPI环比为正值,即逐月增大,错误;D:2021年1月—11月各月的PPI同比为正值,即高于2020年同期水平,正确.故选:D.12、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:14、(答案不唯一)【解析】利用导函数周期和奇偶性构造导函数,再由导函数构造原函数列举即可.【详解】由知函数的周期为,则,同时满足为偶函数,所以满足条件.故答案为:(答案不唯一).15、##【解析】根据题中几何关系,求得点坐标,代入椭圆方程求得齐次式,整理化简即可求得离心率.【详解】根据题意,取点为第一象限的点,过点作的垂线,垂足为,如下所示:因为△为等边三角形,又,故可得则点的坐标为,代入椭圆方程可得:,又,整理得:,即,解得(舍)或.故答案为:.16、2π【解析】由圆锥的侧面积公式即可求解【详解】由题意,圆锥底面周长为2π×1=2π,又母线长为2,所以圆锥的侧面积故答案为:2π.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,证明见解析(2),【解析】(1)根据递推关系求出,,对递推公式变形,即可得证;(2)结合(1)求得通项公式,分组求和.【小问1详解】因为,且所以,,∵,∴,∵,∴,且,∴数列是等比数列.【小问2详解】由(1)可知是以为首项,以3为公比的等比数列,即,即;.18、(1)证明见解析(2)【解析】(1)依题意可得平行四边形是矩形,即可得到,再由及面面垂直的性质定理得到平面,从而得到,即可得到平面,从而得证;(2)建立空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】证明:因为为的中点,,所以,又,所以四边形为平行四边形,因为,所以平行四边形是矩形,所以,因为,所以,又因为平面平面,平面平面面,所以平面,因为面,所以,又因为,平面,所以平面,因为平面,所以平面平面;【小问2详解】解:由(1)可得:两两垂直,如图,分别以所在的直线为轴建立空间直角坐标系,则则,设平面的一个法向量,由则,令,则,所以,设平面的一个法向量,所以,根据图像可知二面角为锐二面角,所以二面角的大小为;19、(1);(2).【解析】(1)将条件化为基本量并解出,进而求得答案;(2)通过裂项法即可求出答案.【小问1详解】由,.得:解得:故.【小问2详解】当时,.所以时,.20、(1)是,;(2)【解析】(1)由题意设出所在直线方程,与抛物线方程联立,化为关于的一元二次方程,由根与系数的关系即可求得为定值;(2)当的斜率为0时,求得三角形的面积为;当的斜率不为0时,由弦长公式求解,再由点到直线的距离公式求到的距离,代入三角形面积公式,利用函数单调性可得三角形的面积大于,由此可得面积的最小值【详解】(1)由题意知,直线斜率存在,不妨设其方程为,联立抛物线的方程可得,设,,则,,所以,,所以,所以是定值(2)当直线的斜率为0时,,又,,此时当直线的斜率不力0时,,又因为,且直线的斜率不为0,所以,即,所以点到直线的距离,此时,因为,所以,综上,面积的最小值为21、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得,令得,化简得,设,则,又,故,即.综上所述,.22、(1);(2)【解析】(1)设点和,由题意可得点的轨迹方程,将点Q的坐标代入T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 修教育志协议书
- 位挂证合同协议
- 微信合作合同范本
- 倒闸合作协议书
- 体验免责协议书
- 住房改动协议书
- 伐木合同协议书
- 工厂合作的协议书
- 保险用合同范本
- 体育招商协议书
- 大窑校本教材合唱的魅力
- 2025字节跳动智能广告发布服务合同(模板)
- 《建筑测绘》课件
- 《健康体检报告解读》课件
- 前台电话礼仪培训
- T-CET 402-2024 金属结构曲面屋顶晶硅组件建筑光伏一体化技术规范
- 智慧健康养老管理基础知识单选题100道及答案解析
- 车床设备大修计划方案
- 《法律职业伦理(第三版)》课件全套 王进喜 第1-21章 法律职业-司法鉴定职业伦理
- 辽宁省地质勘探矿业集团有限责任公司招聘笔试题库2024
- 《山区公路桥梁典型病害手册(试行)》
评论
0/150
提交评论