2023-2024学年江苏省宿迁数学高二上期末考试模拟试题含解析_第1页
2023-2024学年江苏省宿迁数学高二上期末考试模拟试题含解析_第2页
2023-2024学年江苏省宿迁数学高二上期末考试模拟试题含解析_第3页
2023-2024学年江苏省宿迁数学高二上期末考试模拟试题含解析_第4页
2023-2024学年江苏省宿迁数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省宿迁数学高二上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.2.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.3.若直线与圆:相切,则()A.-2 B.-2或6C.2 D.-6或24.在中,角所对的边分别为,,,则外接圆的面积是()A. B.C. D.5.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.66.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.7.函数的导数为()A.B.CD.8.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.89.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.10.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.11.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.312.在等差数列中,为其前n项和,,则()A.55 B.65C.15 D.60二、填空题:本题共4小题,每小题5分,共20分。13.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为__________14.一个质地均匀的正四面体,其四个面涂有不同的颜色,抛掷这个正四面体一次,观察它与地面接触的颜色得到样本空间{红,黄,蓝,绿},设事件{红,黄},事件{红,蓝},事件{黄,绿},则下列判断:①E与F是互斥事件;②E与F是独立事件;③F与G是对立事件;④F与G是独立事件.其中正确判断的序号是______(请写出所有正确判断的序号)15.设,,,则动点P的轨迹方程为______,P到坐标原点的距离的最小值为______16.已知椭圆的右顶点为,为上一点,则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为的圆形区域内(圆形区域的边界上无暗礁),已知小岛中心位于轮船正西处,港口位于小岛中心正北处.(1)若,轮船直线返港,没有触礁危险,求的取值范围?(2)若轮船直线返港,且必须经过小岛中心东北方向处补水,求的最小值.18.(12分)已知圆:与x轴负半轴交于点A,过A的直线交抛物线于B,C两点,且.(1)证明:点C的横坐标为定值;(2)若点C在圆内,且过点C与垂直的直线与圆交于D,E两点,求四边形ADBE的面积的最大值.19.(12分)已知函数(1)求函数的单调递减区间;(2)在中,角,,所对的边分别为,,,且满足,,求面积的最大值20.(12分)已知函数.(1)求的单调递增区间;(2)求在的最大值.21.(12分)如图,在四棱锥中中,平面ABCD,底面ABCD是边长为2的正方形,.(1)求证:平面;(2)求二面角的平面角的余弦值.22.(10分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的解析式及单调递减区间;(2)若函数无零点,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据导数的定义即可求解.【详解】.故选:C.2、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.3、B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B4、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【详解】因为,所以,由余弦定理得,,所以,设外接圆的半径为,由正统定理得,,所以,所以外接圆的面积是.故选:B.5、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C6、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D7、B【解析】由导数运算法则可求出.【详解】,.故选:B.8、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.9、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.10、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题11、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C12、B【解析】根据等差数列求和公式结合等差数列的性质即可求得.【详解】解析:因为为等差数列,所以,即,.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据题中几何关系,求得点坐标,代入椭圆方程求得齐次式,整理化简即可求得离心率.【详解】根据题意,取点为第一象限的点,过点作的垂线,垂足为,如下所示:因为△为等边三角形,又,故可得则点的坐标为,代入椭圆方程可得:,又,整理得:,即,解得(舍)或.故答案为:.14、②③【解析】由对立和互斥事件的定义判断①③;由独立事件的性质判断②④.【详解】{红},则E与F不是互斥事件;且,则F与G是对立事件;,则E与F是独立事件;,,则F与G不是独立事件故答案为:②③15、①.②.l【解析】根据双曲线的定义得到动点的轨迹方程,从而求出到坐标原点的距离的最小值;【详解】解:因为,所以动点P的轨迹为以A,B为焦点,实轴长为2的双曲线的下支.因为,,所以,,,所以动点P的轨迹方程为故P到坐标原点的距离的最小值为故答案为:;;16、【解析】设出点P的坐标,利用两点间距离公式建立函数关系,借助二次函数计算最值作答.【详解】椭圆的右顶点为,设点,则,即,且,于是得,因,则当时,,所以的最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)120【解析】(1)建立平面直角坐标系设直线方程,根据点到直线的距离公式可得;(2)先求补水点的坐标,根据直线过该点,结合所求,根据基本不等式可得.【小问1详解】根据题意,以小岛中心为原点,建立平面直角坐标系,当时,则轮船返港的直线为,因为没有触礁危险,所以原点到的距离,解得.【小问2详解】根据题意可得,,点C在直线上,故点C,设轮船返港的直线是,则,所以.当且仅当时取到最小值.18、(1)证明见解析(2)【解析】(1)设直线方程,与抛物线方程联立,设,,结合,得到,结合根与系数的关系,即可解得答案;(2)根据(1)所设,表示出弦长,再求出,进而表示出四边形ADBE的面积,据此求其最大值,【小问1详解】由题意知点的坐标为,易知直线的斜率存在且不为零,设直线:,,,联立,得,则,即,由韦达定理得,由,即,得,即,代入,得或,又抛物线开口向右,,所以点的横坐标为定值.【小问2详解】由(1)知点的坐标为,故,由(1)知点的坐标为,由点在圆内,得,解得,又,得的斜率,故的方程为,即,故圆心到直线的距离为,由垂径定理得,故,(),当且仅当时,有最大值,所以四边形的面积的最大值为.19、(1)(2)【解析】(1)由三角恒等变换公式化简,根据三角函数性质求解(2)由余弦定理与面积公式,结合基本不等式求解【小问1详解】由己知可得,由,解得:,故的单调递减区间是【小问2详解】,,故,得,由余弦定理得:,得,当且仅当时等号成立,故,面积最大值为20、(1)(2)【解析】(1)利用两角和的余弦公式以及辅助角公式可得,再由正弦函数单调区间,整体代入即可求解.(2)根据三角函数的单调性即可求解.【小问1详解】,,解得,所以函数的单调递增区间为【小问2详解】由(1),解得函数的单调递减区间为,所以函数在上单调递减,在上单调递增,,,所以函数的最大值为.21、(1)证明见解析(2)【解析】(1)根据平面得到,结合得到证明。(2)建立空间直角坐标系,计算各点坐标,计算平面的法向量,根据向量的夹角公式得到答案。【小问1详解】由于平面,平面,所以,由于,又,所以平面【小问2详解】两两垂直,建立如图所示空间直角坐标系,,,,,,设平面的一个法向量为设平面的一个法向量为,由,得,故可取所以所以二面角的平面角的余弦值22、(1)单调减区间为和;(2)的取值范围为:或【解析】(1)先求出函数的导数,求得切线的斜率,由两直线垂直的条件,可得,求得的解析式,可得导数,令导数小于0,可得减区间;(2)先求得,要使函数无零点,即要在内无解,亦即要在内无解.构造函数,对其求导,然后对进行分类讨论,运用单调性和函数零点存在性定理,即可得到的取值范围.【详解】(1),又由题意有:,故.此时,,由或,所以函数的单调减区间为和.(2),且定义域为,要函数无零点,即要在内无解,亦即要在内无解.构造函数.①当时,在内恒成立,所以函数在内单调递减,在内也单调递减.又,所以在内无零点,在内也无零点,故满足条件;②当时,⑴若,则函数在内单调递减,在内也单调递减,在内单调递增.又,所以在内无零点;易知,而,故在内有一个零点,所以不满足条件;⑵若,则函数在内单调递减,在内单调递增.又,所以时,恒成立,故无零点,满足条件;⑶若,则函数在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论