版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省木里藏族自治县中学高二上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.2.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.3.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.4.设,,,…,,,则()A. B.C. D.5.直线的倾斜角的大小为()A. B.C. D.6.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.7.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.8.若在直线上,则直线的一个方向向量为()A. B.C. D.9.在等比数列中,,则的公比为()A. B.C. D.10.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.直线的倾斜角为()A. B.C. D.12.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率为__________________.14.椭圆的右焦点是,两点是椭圆的左顶点和上顶点,若△是直角三角形,则椭圆的离心率是________.15.已知数列满足,则其通项公式_______16.如图,某海轮以的速度航行,若海轮在点测得海面上油井在南偏东,向北航行后到达点,测得油井在南偏东,海轮改为沿北偏东的航向再行驶到达点,则,间的距离是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值18.(12分)已知椭圆,四点中,恰有三点在椭圆上(1)求椭圆的方程;(2)设直线不经过点,且与椭圆相交于不同的两点.若直线与直线的斜率之和为,证明:直线过一定点,并求此定点坐标19.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.20.(12分)2021年7月29日,中国游泳队获得了女子米自由泳接力决赛冠军并打破世界纪录.受奥运精神的鼓舞,某游泳俱乐部组织100名游泳爱好者进行自由泳1500米测试,并记录他们的时间(单位:分钟),将所得数据分成5组:,,,,,整理得到如图所示的频率分布直方图.(1)求出直方图中m的值;(2)利用样本估计总体的思想,估计这100位游泳爱好者1500米自由泳测试时间的平均数和中位数(同一组中的数据用该组区间中点值作代表).21.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.22.(10分)新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是岁以上人群.该病毒进入人体后有潜伏期.潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高.现对个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为,方差为.如果认为超过天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:年龄/人数长期潜伏非长期潜伏50岁以上6022050岁及50岁以下4080(1)是否有的把握认为“长期潜伏”与年龄有关;(2)假设潜伏期服从正态分布,其中近似为样本平均数,近似为样本方差.(i)现在很多省市对入境旅客一律要求隔离天,请用概率知识解释其合理性;(ii)以题目中的样本频率估计概率,设个病例中恰有个属于“长期潜伏”的概率是,当为何值时,取得最大值.附:0.10.050.0102.7063.8416.635若,则,,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C2、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.3、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.4、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B5、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选6、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.7、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A8、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D9、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.10、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.11、D【解析】若直线倾斜角为,由题设有,结合即可得倾斜角的大小.【详解】由直线方程,若其倾斜角为,则,而,∴.故选:D12、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程确定a,b,c的值,求出离心率.【详解】由双曲线可得:,故,故答案为:14、【解析】由题设易知,应用斜率的两点式及椭圆参数关系可得,进而求椭圆离心率.【详解】由题设,,,,又△是直角三角形,显然,所以,可得,则,解得,又,所以.故答案为:.15、【解析】构造法可得,由等比数列的定义写出的通项公式,进而可得.【详解】令,则,又,∴,故,而,∴是公比为,首项为,则,∴.故答案为:.16、【解析】根据条件先由正弦定理求出的长,得出,求出的长,由勾股定理可得答案.【详解】海轮向北航行后到达点,则由题意,在中,又则,由正弦定理可得:,即在中,,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为18、(1)(2)证明见解析,定点【解析】(1)先判断出在椭圆上,再代入求椭圆方程;(2)假设斜率存在,设出直线,利用斜率之和为,求出之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可.【小问1详解】由对称性同时在椭圆上或同时不在椭圆上,从而在椭圆上,因此不在椭圆上,故在椭圆上,将,代入椭圆的方程,解得,所以椭圆的方程为【小问2详解】当直线斜率存在时,令方程为,由得所以得方程为,过定点当直线斜率不存在时,令方程为,由,即解得此时直线方程为,也过点综上,直线过定点.【点睛】本题关键点在于先假设斜率存在,设出直线,利用题目所给条件得到之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可,属于定点问题的常见解法,注意积累掌握.19、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.20、(1)(2),【解析】(1)利用频率之和也即各矩形的面积和为1即可求解.(2)利用平均数和中位数的计算方法求解即可.【小问1详解】由,可得.【小问2详解】平均数为:,设中位数为,则,解得.21、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所以为定值.22、(1)有;(2)(i)答案见解析;(ii)250.【解析】(1)根据列联表中的数据,利用求得,与临界表值对比下结论;(2)(ⅰ)根据,利用小概率事件判断;(ⅱ)易得一个患者属于“长潜伏期”的概率是,进而得到,然后判断其单调性求解.【详解】(1)依题意有,由于,故有的把握认为“长期潜伏”与年龄有关;(2)(ⅰ)若潜伏期,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养殖鸭棚租赁合同范本
- 变电所维保协议及合同
- 共同经营鱼塘合同范本
- 合伙经营股权合同范本
- 人事代理公司合同范本
- 倒闭工厂转让合同范本
- 2026年投资项目管理师之宏观经济政策考试题库300道及答案(历年真题)
- 2026年初级经济师之初级建筑与房地产经济考试题库300道附答案(巩固)
- 司机派遣劳动合同范本
- 农村山地出租合同范本
- 2025年中国水处理用絮凝剂和凝聚剂行业市场分析及投资价值评估前景预测报告
- 2025年内蒙古公职人员考试时事政治考试试题(附含答案)
- 公安机房运维知识培训课件
- 《基层常见病诊疗指南》
- 2025年及未来5年中国专用灯具行业市场调研及投资战略研究报告
- 2025年新版中国移动笔试题库及答案
- 2025年湖北省生态环保有限公司招聘33人笔试参考题库附带答案详解
- 集装箱驾驶员管理制度
- 第八章健美操健美操组合动作教学设计人教版初中体育与健康八年级全一册
- 4.11五四运动课件-统编版八年级历史上册
- 肿瘤患者中心静脉血管通路装置相关皮肤损伤临床护理实践指南 2
评论
0/150
提交评论