




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省肥东市高级中学2023-2024学年高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件2.已知,分别为椭圆的左右焦点,为坐标原点,椭圆上存在一点,使得,设的面积为,若,则该椭圆的离心率为()A. B.C. D.3.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.4.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.5.在等比数列中,,,则()A. B.或C. D.或6.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.7.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.8.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.9.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.3710.已知函数,要使函数有三个零点,则的取值范围是()A. B.C. D.11.已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A. B.C. D.12.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称二、填空题:本题共4小题,每小题5分,共20分。13.函数在处切线的斜率为_____14.如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.15.已知,,则___________.16.直线与圆相交于A,B两点,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值18.(12分)已知椭圆的上一点处的切线方程为,椭圆C上的点与其右焦点F的最短距离为,离心率为(1)求椭圆C的标准方程;(2)若点P为直线上任一点,过P作椭圆的两条切线PA,PB,切点为A,B,求证:19.(12分)已知直线过点(1)若直线与直线垂直,求直线的方程;(2)若直线在两坐标轴的截距相等,求直线的方程20.(12分)经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到)(2)为保证在该时段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?21.(12分)已知椭圆的左、右焦点分别为,且,直线过与交于两点,的周长为8(1)求的方程;(2)过作直线交于两点,且向量与方向相同,求四边形面积的取值范围22.(10分)已知椭圆一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.2、D【解析】由可得直角三角形,故,且,结合,联立可得,即得解【详解】由题意,故为直角三角形,,又,,又为直角三角形,故,,即,.故选:D.3、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C4、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.5、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.6、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B7、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A8、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C9、C【解析】直接按照等差数列项数性质求解即可.【详解】数列的前6项之和为.故选:C.10、A【解析】要使函数有三个解,则与图象有三个交点,数形结合即可求解.【详解】要使函数有三个解,则与图象有三个交点,因为当时,,所以,可得在上递减,在递增,所以,有最小值,且时,,当趋向于负无穷时,趋向于0,但始终小于0,当时,单调递减,由图像可知:所以要使函数有三个零点,则.故选:A11、C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.12、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】求得函数的导数,计算得,即可得到切线的斜率【详解】由题意,函数,则,所以,即切线的斜率为1,故答案为:114、【解析】由题意,二面角等于,根据,结合向量的运算,即可求解.【详解】由题意,二面角等于,可得向量,,因为,可得,所以.故答案为:15、5【解析】根据空间向量的数量积运算的坐标表示运算求解即可.【详解】解:因为,,所以.故答案为:16、【解析】直线过定点,圆心,当时,取得最小值,再由勾股定理即可求解.【详解】由,得,由,得直线过定点,且在圆的内部,由圆可得圆心,半径,当时,取得最小值,圆心与定点的距离为,则的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为18、(1)(2)证明见解析【解析】(1)设为椭圆上的点,为椭圆的右焦点,求出然后求解最小值,推出,,,得到双曲线方程(2)设,,,,,即可得到,依题意可得以、为切点的切线方程,从而得到直线的方程,再分与两种情况讨论,即可得证;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,因为,所以,又,所以当且仅当时,,因为,所以,,因为,所以,故椭圆的标准方程为【小问2详解】解:由(1)知,设,,,,,所以,由题知,以为切点的椭圆切线方程为,以为切点的椭圆切线方程为,又点在直线、上,所以、,所以直线的方程为,当时,直线的斜率不存在,直线斜率为,所以,当时,,所以,所以,综上可得;19、(1)(2)或【解析】(1)由两条直线垂直可设直线的方程为,将点的坐标代入计算即可;(2)当直线过原点时,根据直线的点斜式方程即可得出结果;当直线不过原点时可设直线的方程为,将点的坐标代入计算即可.【小问1详解】解:因为直线与直线垂直所以,设直线的方程为,因为直线过点,所以,解得,所以直线的方程为【小问2详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即当直线不过原点时,设直线的方程为,把点代入方程得,所以直线的方程是综上,所求直线的方程为或20、(1)当(千米/小时)时,车流量最大,最大值约为千辆/小时;(2)汽车的平均速度应控制在这个范围内(单位:千米/小时).【解析】(1)利用基本不等式可求得的最大值,及其对应的值,即可得出结论;(2)解不等式即可得解.【小问1详解】解:,(千辆/小时),当且仅当时,即当(千米/小时)时,车流量最大,最大值约为千辆/小时.【小问2详解】解:据题意有,即,即,解得,所以汽车的平均速度应控制在这个范围内(单位:千米/小时).21、(1);(2).【解析】(1)根据给定条件直接求出半焦距,及长半轴长即可作答.(2)根据给定条件结合椭圆的对称性可得四边形为平行四边形,设出直线l的方程,与椭圆C的方程联立,借助韦达定理、对勾函数性质计算作答.【小问1详解】依题意,椭圆半焦距,由椭圆定义知,的周长,解得,,因此椭圆的方程为.【小问2详解】依题意,直线的斜率不为0,设直线的方程为,,由消去并整理得:,则,,因与方向相同,即,又椭圆是以原点O为对称中心的中心对称图形,于是得,即四边形为平行四边形,其面积,则,令,则,则,显然在上单调递增,则当时,,即,从而可得,所以四边形面积的取值范围为.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积22、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025技术员试用期聘用合同
- 2025年塑料管材购销合同范本大全
- 2025建筑项目贷款合同模板范文
- 2025网络安全服务合同范本
- 2025标准店铺租赁合同模板
- 2025年学校食堂餐饮服务承包合同模板
- 2025年纳豆激酶项目建议书
- 2025年光学纤维面板系列项目建议书
- 2025年传动件:传动带合作协议书
- 2025年家用塑胶垫合作协议书
- GB/T 10228-2023干式电力变压器技术参数和要求
- 基于STM32的停车场智能管理系统
- 超市商品分类明细表
- 2023年北京市石景山区八角街道社区工作者招聘笔试题库及答案解析
- 完整解读中华人民共和国政府信息公开条例课件
- RB/T 109-2013能源管理体系人造板及木制品企业认证要求
- GB/T 31997-2015风力发电场项目建设工程验收规程
- GB/T 16895.2-2017低压电气装置第4-42部分:安全防护热效应保护
- 法人治理主体“1+3”权责表
- 小学科学《蚂蚁》优质课件
- 幼儿园中班语言绘本《章鱼先生卖雨伞》课件
评论
0/150
提交评论