




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市三校2024届数学高二上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与垂直,则为()A.2 B.C.-2 D.2.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.3.在正方体中,分别为的中点,为侧面的中心,则异面直线与所成角的余弦值为()A. B.C. D.4.函数的极大值点为()A. B.C. D.不存在5.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为6.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.57.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.8.设直线的倾斜角为,且,则满足A. B.C. D.9.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.10.当时,不等式恒成立,则实数的取值范围为()A. B.C. D.11.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥012.函数的最小值为()A. B.1C.2 D.e二、填空题:本题共4小题,每小题5分,共20分。13.设a为实数,若直线与直线平行,则a值为______.14.函数的图象在点处的切线方程为___________.15.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.16.函数在处的切线方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间18.(12分)已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.19.(12分)已知二项式的展开式中各二项式系数之和比各项系数之和小240.求:(1)n的值;(2)展开式中x项的系数;(3)展开式中所有含x的有理项20.(12分)已知函数在处的切线与直线平行(1)求值,并求此切线方程;(2)证明:21.(12分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.22.(10分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.2、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D3、A【解析】建立空间直角坐标系,用空间向量求解异面直线夹角的余弦值.【详解】如图,以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,所在直线为z轴建立空间直角坐标系,设正方体棱长为2,则,,,,则,,设异面直线与所成角为(),则.故选:A4、B【解析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B5、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.6、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.7、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C8、D【解析】因为,所以,,,,故选D9、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A10、A【解析】设,对实数的取值进行分类讨论,求得,解不等式,综合可得出实数的取值范围.【详解】设,其中.①当时,即当时,函数在区间上单调递增,则,解得,此时不存在;②当时,,解得;③当时,即当时,函数在区间上单调递减,则,解得,此时不存在.综上所述,实数的取值范围是.故选:A.11、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.12、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据两直线平行得到,解方程组即可求出结果.【详解】由题意可知,解得,故答案为:.14、【解析】求导得到,计算,根据点斜式可得到切线方程.【详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:15、①.②.【解析】(1)利用直译法直接求出P点的轨迹(2)先利用阿氏圆的定义将转化为P点到另一个定点的距离,然后结合抛物线的定义容易求得的最小值【详解】设P(x,y),由阿氏圆的定义可得即化简得则设则由抛物线的定义可得当且仅当四点共线时取等号,的最小值为故答案为:【点睛】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大16、【解析】求得函数的导数,得到且,结合直线的点斜式方程,即可求解.【详解】由题意,函数,可得,则且,所以函数在处的切线方程为,即,即切线方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切点在切线上,所以,函数通过点又,根据导数几何意义,;【小问2详解】由可知当时,则;当时,则;当时,的单调递减区间为,单调递增区间为当时,单调递增区间为,单调递减区间为.18、(1)(2)或【解析】(1)分析可知圆心在直线上,联立两直线方程,可得出圆心的坐标,计算出圆的半径,即可得出圆的方程;(2)利用勾股定理求出圆心到直线的距离,然后对直线的斜率是否存在进行分类讨论,设出直线的方程,利用点到直线的距离公式求出参数,即可得出直线的方程.【小问1详解】解:过点且与直线垂直的直线的方程为,由题意可知,圆心即为直线与直线的交点,联立,解得,故圆的半径为,因此,圆的方程为.【小问2详解】解:由勾股定理可知,圆心到直线的距离为.当直线的斜率不存在时,直线的方程为,圆心到直线的距离为,满足条件;当直线的斜率存在时,设直线的方程为,即,由题意可得,解得,此时,直线的方程为,即.综上所述,直线的方程为或.19、(1)4(2)54(3)第1项,第3项,第5项【解析】(1)由题可得,解方程即得;(2)利用二项展开式的通项公式,即得;(3)利用二项展开式的通项公式,令,即求【小问1详解】由已知,得,即,所以或(舍),∴【小问2详解】设展开式的第项为令,得,则含x项的系数为【小问3详解】由(2)可知,令,则有,2,4,所以含x的有理项为第1项,第3项,第5项20、(1);;(2)证明见解析.【解析】(1)根据导数几何意义可知,解方程求得,进而得到切线方程;(2)当时,由,知不等式成立;当时,令,利用导数可求得在上单调递增,从而得到,由此可得结论.【小问1详解】,,在处的切线与直线平行,即切线斜率为,,解得:,,,所求切线方程为:,即;【小问2详解】要证,即证;①当时,,,,即,;②当时,令,,,当时,,,,,即,在上单调递增,,在上单调递增,,即在上恒成立;综上所述:.【点睛】思路点睛:本题第二问考查利用导数证明不等式的问题,解题的基本思路是将问题转化为函数最值的求解问题;通过构造函数,利用导数求函数最值的方法可确定恒成立,从而得到所证结论.21、(1)极大值为,无极小值(2)【解析】(1)求函数的导数,根据导数的正负判断极值点,代入原函数计算即可;(2)将变形,即对恒成立,然后构造函数,利用求导判定函数的单调性,进而确定实数a的取值范围..【小问1详解】对函数求导可得:,可知当时,时,,即可知在上单调递增,在上单调递减由上可知,的极大值为,无极小值【小问2详解】由对恒成立,当时,恒成立;当时,对恒成立,可变形为:对恒成立,令,则;求导可得:由(1)知即恒成立,当时,,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025家具购买合同范本
- 结肠脂肪瘤的临床护理
- 2025家电购买合同样本
- 2025年国家电网招聘之电工类通关考试题库带答案解析
- 2025年度出版物销售合同协议
- 初中历史明朝的灭亡和清朝的建立 课件 +2024-2025学年统编版七年级历史下册
- 镰刀型细胞贫血病的临床护理
- 书写痉挛的临床护理
- 小儿胆道蛔虫症的临床护理
- 第三型腹膜炎的临床护理
- 新版《医疗器械经营质量管理规范》(2024)培训试题及答案
- 大数据与人工智能营销(南昌大学)知到智慧树章节答案
- 大学生创业计划书word文档(三篇)
- 中部车场设计
- LY/T 1529-2020普通胶合板生产综合能耗
- FZ/T 13056-2021涤粘混纺色纺弹力布
- 构图基础课件
- 礼仪文书写作课件
- 20CrMnTi较详细材料属性
- 《三国演义》竞赛100题含答案
- (完整版)市政道路综合管廊施工方案
评论
0/150
提交评论