北京西城8中2024届高二上数学期末监测试题含解析_第1页
北京西城8中2024届高二上数学期末监测试题含解析_第2页
北京西城8中2024届高二上数学期末监测试题含解析_第3页
北京西城8中2024届高二上数学期末监测试题含解析_第4页
北京西城8中2024届高二上数学期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京西城8中2024届高二上数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.62.瑞士数学家欧拉1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是()A. B.C. D.3.函数的导数记为,则等于()A. B.C. D.4.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,且对,,且总有,则下列选项正确的是()A. B.C. D.5.已知离散型随机变量X的分布列如下:X123P则数学期望()A. B.C.1 D.26.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或47.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限8.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为()A. B.C.4 D.9.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件10.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.12.变量,满足约束条件则的最小值为()A. B.C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______14.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______15.已知,在直线上存在点P,使,则m的最大值是_______.16.已知函数,则函数在区间上的平均变化率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的首项为2,公差为8.在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列.(1)求数列的通项公式;(2)若,,,,是从中抽取的若干项按原来的顺序排列组成的一个等比数列,,,令,求数列的前项和.18.(12分)已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围19.(12分)如图,四边形是正方形,平面,,(1)证明:平面平面;(2)若与平面所成角为,求二面角的余弦值20.(12分)(1)已知:函数有零点;:所有的非负整数都是自然数.若为假,求实数的取值范围;(2)已知:;:.若是的必要不充分条件,求实数的取值范围.21.(12分)已知函数(1)求关于x的不等式的解集;(2)若对任意的,恒成立,求实数a的取值范围22.(10分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D2、C【解析】设出点C坐标,求出的重心并代入欧拉线方程,验证并排除部分选项,余下选项再由外心、垂心验证判断作答.【详解】设顶点的坐标为,则的重心坐标为,依题意,,整理得:,对于A,当时,,不满足题意,排除A;对于D,当时,,不满足题意,排除D;对于B,当时,,对于C,当时,,直线AB的斜率,线段AB中点,线段AB中垂线方程:,即,由解得:,于是得的外心,若点,则直线BC的斜率,线段BC中点,该点与点M确定直线斜率为,显然,即点M不在线段BC的中垂线上,不满足题意,排除B;若点,则直线BC的斜率,线段BC中点,线段BC中垂线方程为:,即,由解得,即点为的外心,并且在直线上,边AB上的高所在直线:,即,边BC上的高所在直线:,即,由解得:,则的垂心,此时有,即的垂心在直线上,选项C满足题意.故选:C【点睛】结论点睛:的三顶点,则的重心为.3、D【解析】求导后代入即可.【详解】,.故选:D.4、D【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以D正确,C不正确.故选:D.【点睛】本题考查以数学文化为背景,导数的几何意义,根据函数的单调性比较函数值的大小,属于中档题型.5、D【解析】利用已知条件,结合期望公式求解即可【详解】解:由题意可知:故选:D6、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.7、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.8、A【解析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C作CD⊥x轴于点D,则,所以直观图是底为2、高为的平行四边形,所以面积为.故选:A.9、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D10、B【解析】根据充分条件、必要条件的定义进行判定.【详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.11、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.12、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:14、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或1015、11【解析】设P点坐标,根据条件知,由向量的坐标运算可得P点位于圆上,再根据P存在于直线上,可知直线和圆有交点,因此列出相应的不等式,求得m范围,可得m的最大值.【详解】设P(x,y),则,由题意可知,所以,即,即满足条件的点P在圆上,又根据题意P点存在于直线上,则直线与圆有交点,故有圆心(1,0)到直线的距离小于等于圆的半径,即,解得,则m的最大值为11,故答案为:11.16、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列,可知的公差,进而可求出其通项公式;(2)根据题意可得,进而得到,再代入中得,利用错位相减即可求出前项和.【小问1详解】由于等差数列的公差为8,在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列,则的公差,的首项和首项相同为2,则数列的通项公式为.【小问2详解】由于,是等比数列的前两项,且,,则,则等比数列的公比为3,则,即,.①.②.①减去②得..18、或【解析】首先根据复数的乘方及复数模的计算公式求出命题为真时参数的取值范围,再根据椭圆的性质求出命题为真时参数的取值范围,依题意为假,为真,即可求出参数的取值范围;【详解】解:因为,,,,所以,所以,所以为真时,因为方程表示焦点在轴上的椭圆,所以,所以,即为真时,所以为假时参数的取值范围为或,因为命题为真,命题或为真,所以为假,为真,或19、(1)证明见解析;(2).【解析】(1)连接与交于点O,易得平面,取的中点M,易得为平行四边形,即,得到平面,然后利用面面垂直的判定定理证明;(2)以A为坐标原点,分别为x,y,z轴,建立空间直角坐标系,设,根据与平面所成角为,由,解得,然后分别求得平面的一个法向量,平面的一个法向量,由求解.【详解】(1)如图所示:连接与交于点O,因为为正方形,故,又平面,故,由,故平面,取的中点M,连接,注意到为的中位线,故,且,因此,且,故为平行四边形,即,因此平面,而平面,故平面平面(2)以A坐标原点,分别为x,y,z轴,建立空间直角坐标系,设,则,由(1)可知平面,因此平面的一个法向量为,而,由与平面所成角为,得,即,解得;则,设平面的一个法向量为,则得令,则,故设平面的一个法向量,则得令,则,,故所以,注意到二面角为钝二面角,故二面角的余弦值为20、(1);(2).【解析】(1)易知为真命题,根据且命题的真假可知为假命题,结合函数零点与对应方程的根之间的关系得出,解不等式即可;(2)根据一元二次不等式的解法可得和,结合必要不充分条件的概念可得,利用集合与集合之间的关系即可得出答案.【详解】解:(1)对于:所有的非负整数都是自然数,显然正确.因为为假,所以为假.所以“函数没有零点”为真,所以,解得.所以实数的取值范围是.(2)对于:,解得或.对于,不等式的解集为,因为是的必要不充分条件,所以所以或,所以或,所以实数的取值范围是.21、(1)答案见解析(2)【解析】(1)求出对应方程的根,再根据根的大小进行讨论,即可得解;(2)对任意的,恒成立,即恒成立,结合基本不等式求出的最小值即可得解.【小问1详解】解:由已知易得即为:,令可得与,所以,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;【小问2详解】解:由可得,由,得,所以可得,,当且仅当,即时等号成立,所以,所以的取值范围是.22、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时,当时,,为增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论