




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届太原市重点中学高二数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若,则的取值范围为()A. B.C. D.2.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8203.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离4.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.5.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆6.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0公共弦所在直线方程为()A. B.C. D.7.新冠肺炎疫情的发生,我国的三大产业均受到不同程度的影响,其中第三产业中的各个行业都面临着很大的营收压力.2020年7月国家统计局发布了我国上半年国内经济数据,如图所示,图1为国内三大产业比重,图2为第三产业中各行业比重下列关于我国上半年经济数据的说法正确的是()A.第一产业的生产总值与第三产业中“其他服务业”的生产总值基本持平B.第一产业的生产总值超过第三产业中“金融业”的生产总值C.若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为22500亿元D.若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元8.抛物线的准线方程为()A B.C. D.9.数列满足,对任意,都有,则()A. B.C. D.10.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.11.下列命题中,真命题的个数为()(1)是为双曲线的充要条件;(2)若,则;(3)若,,则;(4)椭圆上的点距点最近的距离为;A.个 B.个C.个 D.个12.某工厂节能降耗技术改造后,在生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如下表,现发现表中有个数据看不清,已知回归直线方程为=6.3x+6.8,下列说法正确的是()x23456y1925★4044A.看不清的数据★的值为33B.回归系数6.3的含义是产量每增加1吨,相应的生产能耗实际增加6.3吨C.据此模型预测产量为8吨时,相应的生产能耗为50.9吨D.回归直线=6.3x+6.8恰好经过样本点(4,★)二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式的解集为R,则的取值范围是______.14.已知随机变量X服从正态分布,若,则______15.已知,,且,则的最小值为___________16.数列的前项和为,则的通项公式为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:间隔时间x/分101112131415等候人数y/人232526292831调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是中间4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”.(2)假设该起点站等候人数为24人,请你根据(1)中的结论预测车辆发车间隔多少时间合适?附:对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为18.(12分)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.19.(12分)如图1,在四边形ABCD中,,,E是AD的中点,将沿BF折起至的位置,使得二面角的大小为120°(如图2),M,N分别是,的中点.(1)证明:平面;(2)求平面与平面夹角的余弦值.20.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值21.(12分)已知点为抛物线的焦点,点在抛物线上,的面积为1.(1)求抛物线的标准方程;(2)设点是抛物线上异于点的一点,直线与直线交于点,过作轴的垂线交抛物线于点,求证:直线过定点.22.(10分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.2、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.3、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B4、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:5、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.6、B【解析】两圆的方程消掉二次项后的二元一次方程即为公共弦所在直线方程.【详解】由x2+y2-4=0与x2+y2-4x+4y-12=0两式相减得:,即.故选:B7、D【解析】根据扇形图及柱形图中的各产业与各行业所占比重,得到第三产业中“其他服务业”及“金融业”的生产总值占总生产总值的比重,进而比较出AB选项,利用“住宿和餐饮业”生产总值和“房地产”生产总值的比值,求出“房地产”生产总值,判断出C选项,利用第三产业中“金融业”的生产总值与第二产业的生产总值比值,求出第二产业生产总值,判断D选项.【详解】A选项,第三产业中“其他服务业”的生产总值占总生产总值的,因为,所以第三产业中“其他服务业”的生产总值明显高于第一产业的生产总值,A错误;B选项,第三产业中“金融业”的生产总值占总生产总值的,因为,故第一产业的生产总值少于第三产业中“金融业”的生产总值,B错误;“住宿和餐饮业”生产总值和“房地产”生产总值的比值为,若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为亿元,故C错误;第三产业中“金融业”的生产总值占总生产总值的,与第二产业的生产总值比值为,若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元,D正确.故选:D8、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.9、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.10、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.11、A【解析】利用方程表示双曲线求出的取值范围,利用集合的包含关系可判断(1)的正误;直接判断命题的正误,可判断(2)的正误;利用空间向量垂直的坐标表示可判断(3)的正误;利用椭圆的有界性可判断(4)的正误.【详解】对于(1),若曲线为双曲线,则,即,解得或,因为或,因此,是为双曲线的充分不必要条件,(1)错;对于(2),若,则或,(2)错;对于(3),,则,(3)对;对于(4),设点为椭圆上一点,则且,则点到点的距离为,(4)错.故选:A.12、D【解析】根据回归直线方程的性质和应用,对每个选项进行逐一分析,即可判断和选择.【详解】对A:因为,将代入,故,∴,故A错误;对,回归系数6.3的含义是产量每增加1吨,相应的生产能耗大约增加6.3吨,故错误;对,当时,,故错误;对,因为,故必经过,故正确.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:14、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.15、25【解析】根据,,且,由,利用基本不等式求解.【详解】因为,,且,所以,当且仅当,即时,等号成立,所以的最小值为25,故答案为:2516、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),是“恰当回归方程”;(2)10分钟较合适.【解析】(1)应用最小二乘法求出回归直线方程,再分别估计、时的值,结合“恰当回归方程”的定义判断是否为“恰当回归方程”.(2)根据(1)所得回归直线方程,将代入求x值即可.【小问1详解】中间4组数据是:间隔时间(分钟)11121314等候人数(人)25262928因为,所以,故,又,所以,当时,,而;当时,,而;所以所求的线性回归方程是“恰当回归方程”;【小问2详解】由(1)知:当时,,所以预测车辆发车间隔时间10分钟较合适.18、(1)证明见解析;(2)【解析】(1)要证,可证,由题意可得,,易证,从而平面,即有,从而得证;(2)取中点,根据题意可知,两两垂直,所以以点为坐标原点,建立空间直角坐标系,再分别求出向量和平面的一个法向量,即可根据线面角的向量公式求出【详解】(1)中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系,则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为【点睛】本题第一问主要考查线面垂直的相互转化,要证明,可以考虑,题中与有垂直关系直线较多,易证平面,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出19、(1)证明见解析(2)【解析】(1)构造中位线,利用面面平行,可以证明;(2)建立空间直角坐标系,用空间向量的方法即可.【小问1详解】证明:如图,取ED的中点P,连接MP,NP.在平行四边形ABCD中,因为E是AD的中点,,所以,又,所以四边形BCDE是平行四边形;因为M,N分别是,BC的中点,所以,.又平面,平面,所以平面,平面.因为,所以平面平面.又平面,所以平面【小问2详解】取BE的中点O,连接,CO,CE.在图1中,因为,所以是等边三角形,,又四边形ABCD等腰梯形,所以,即是等边三角形;所以如图,,,所以.以为原点,射线OB为x轴的正半轴建立如图所示的空间直角坐标系.因为,则,,,,则,设平面的法向量为,,得令,则,,即,由题可知,平面BCD的一个法向量为,.由图可知,平面与平面BDC夹角余弦值为;20、(1);(2)或.【解析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1)(2)证明见解析【解析】(1)由条件列方程求,由此可得抛物线方程;(2)方法一:联立直线与抛物线方程,结合条件三点共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师教育教学反思的创新路径试题及答案
- 如何解读2025年创业扶持政策的变化试题及答案
- 河北检察院试题及答案
- 智能网联汽车技术的商业模式探讨试题及答案
- 新房装修家具设计中的流行元素解析试题及答案
- 旅游景区2025年旅游与环境保护社会稳定风险评估报告
- 王牌战士考试试题及答案
- 安全工程师知识更新与实务结合2025年试题及答案
- 智能化与新能源融合趋势试题及答案
- 政策对创业实践的指导意义试题及答案
- 成都青羊小升初5+4考试习题真题
- (正式版)JBT 14582-2024 分户减压阀
- 演唱会安保方案及应急预案
- 《新闻评论》课件 第四章 新闻评论的基本类型
- 《齿轮介绍》课件
- 民营医院分析报告
- 知心慧学提分宝-数学
- 吉祥航空飞行报告
- 《曼陀罗绘画疗愈-初三减压》PPT
- 彩钢板屋面监理细则
- 文艺复兴史学习通超星课后章节答案期末考试题库2023年
评论
0/150
提交评论