




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市南安一中2024届高二上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元2.直线(t为参数)被圆所截得的弦长为()A. B.C. D.3.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.44.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.5.已知向量,,则()A. B.C. D.6.①命题设“,若,则或”;②若“”为真命题,则p,q均为真命题;③“”是函数为偶函数的必要不充分条件;④若为空间的一个基底,则构成空间的另一基底;其中正确判断的个数是()A.1 B.2C.3 D.47.直线的倾斜角大小为()A. B.C. D.8.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.9.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.310.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种11.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条12.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.14.如图,按照以下规律排列的数阵中,第i行从左向右第j个数记为,如,,则______;令则______15.直线与直线的夹角大小等于_______16.已知数列的通项公式,则数列的前5项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)任意,恒成立,求的取值范围.18.(12分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长19.(12分)求满足下列条件的曲线的方程:(1)离心率为,长轴长为6的椭圆的标准方程(2)与椭圆有相同焦点,且经过点的双曲线的标准方程20.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.21.(12分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数22.(10分)我们知道,装同样体积的液体容器中,如果容器的高度一样,那么侧面所需的材料就以圆柱形的容器最省.所以汽油桶等装液体的容器大都是圆柱形的,某卧式油罐如图1所示,它垂直于轴的截面如图2所示,已知截面圆的半径是1米,弧的长为米表示劣弧与弦所围成阴影部分的面积.(1)请写出函数表达式;(2)用求导的方法证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D2、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.3、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B4、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.5、D【解析】按空间向量的坐标运算法则运算即可.【详解】.故选:D.6、B【解析】利用逆否命题、含有逻辑联结词命题的真假性、充分和必要条件、空间基底等知识对四个判断进行分析,由此确定正确答案.【详解】①,原命题的逆否命题为“,若且,则”,逆否命题是真命题,所以原命题是真命题,①正确.②,若“”为真命题,则p,q至少有一个真命题,②错误.③,函数为偶函数的充要条件是“”.所以“”是函数为偶函数的充分不必要条件,③错误.④,若为空间的一个基底,即不共面,若共面,则存在不全为零的,使得,故,因为为空间的一个基底,,故,矛盾,故不共面,所以构成空间的另一基底,④正确.所以正确的判断是个.故选:B7、B【解析】将直线方程变为斜截式,根据斜率与倾斜角关系可直接求解.【详解】由直线可得,所以,设倾斜角为,则因为所以故选:B8、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.9、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.10、C【解析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C11、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.12、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.3【解析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.14、①.55②.【解析】令易知是首项为,公差为1的等差数列,写出通项公式,再应用累加法求及通项公式,结合求通项公式,进而可得,最后两次应用错位相减法求即可.【详解】由题设知:令,则是首项为,公差为1的等差数列,故,所以,即,由上可得:,则,而,所以,则,所以,,所以,令,则,所以,故,综上,,则.故答案为:,.【点睛】关键点点睛:通过图总结规律,易知是等差数列,应用累加法求,再由求通项公式,最后应用错位相减法求前n项和.15、##【解析】根据直线的倾斜角可得答案.【详解】直线是与轴平行的直线,直线的斜率为1,即与轴的夹角为角,故直线与直线的夹角大小等于.故答案为:.16、【解析】根据数列的通项公式可得答案.【详解】因为,所以数列的前5项为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的递增区间为,递减区间为(2)【解析】(1)先求出函数的导数,令、解出对应的解集,结合定义域即可得到函数的单调区间;(2)将不等式转化为,令,利用导数讨论函数分别在、时的单调性,进而求出函数的最值,即可得出答案.【小问1详解】函数的定义域为,又当时,,当时,故的递增区间为,递减区间为.【小问2详解】,即,令,有,,若,在上恒成立.则在上为减函数,所以有若,由,可得,则在上增,所以在上存在使得,与题意不符合综上所述,.18、(1)(2)cm【解析】(1)设抛物线的标准方程为,由题意可得抛物线过点,将此点代入方程中可求出的值,从而可得抛物线方程,(2)设此时的口径长为,则抛物线过点,代入抛物线方程可求出的值,从而可求得答案【小问1详解】由题意,建立如图所示的平面直角坐标系,设抛物线的标准方程为,因为顶点深度4,口径长为12,所以该抛物线过点,所以,得,所以抛物线方程为;【小问2详解】若将磨具的顶点深度减少,设此时的口径长为,则可得,得,所以此时该磨具的口径长19、(1)或;(2)【解析】(1)根据题意,由椭圆的几何性质可得a、c的值,计算可得b的值,讨论椭圆焦点的位置,求出椭圆的标准方程,即可得答案;(2)根据题意,求出椭圆的焦点坐标,进而可以设双曲线的方程为,分析可得和,解可得a、b的值,即可得答案【详解】解:(1)根据题意,要求椭圆的长轴长为6,离心率为,则,,解可得:,;则,若椭圆的焦点在x轴上,其方程为,若椭圆的焦点在y轴上,其方程为,综合可得:椭圆的标准方程为或;(2)根据题意,椭圆的焦点为和,故要求双曲线的方程为,且,则有,又由双曲线经过经过点,则有,,联立可得:,故双曲线方程为:【点睛】本题考查椭圆、双曲线的标准方程的求法,涉及椭圆、双曲线的几何性质,属于基础题20、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.21、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时,当时,,为增函数;当时。,为减函数,所以在处取得极大值,也是最大值,最大值为,因为对任意正实数,恒成立,所以,得.【小问2详解】,,由,得,由,得或,所以在上为增函数,在上为减函数,在上为增函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储物流管理试题及答案
- 广告设计师考试的解析思路与试题及答案
- 疫情舆论面试题及答案
- 2024年商业设计师考试变更试题及答案
- 2024年广告设计师广告管理知识试题及答案
- 创新思维试题题库及答案
- 决策能力的2024年国际商业美术设计师考试试题及答案
- 2024年助理广告师考试全局认知能力考核试题及答案
- 初中数学试题及答案详解
- 渗透思维国际商业美术设计师考试试题及答案
- 室内设计人机工程学讲义
- GB/T 35513.2-2017塑料聚碳酸酯(PC)模塑和挤出材料第2部分:试样制备和性能测试
- T-CEEAS 004-2021 企业合规师职业技能评价标准
- 林教头风雪山神庙【区一等奖】-完整版课件
- 儿童生长发育专项能力提升项目-初级结业考试卷
- 天津市新版就业、劳动合同登记名册
- 改性环氧树脂薄层铺装方案
- 产品追溯及模拟召回演练计划
- 合同到期协议书(3篇)
- IPC-A-610国际标准中英文对照(doc 17)
- 山大《毛泽东思想和中国特色社会主义理论体系概论》教案第3章 社会主义改造理论
评论
0/150
提交评论