




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市2024届高二上数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.62.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.3.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长的一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺4.函数的图象如图所示,则下列大小关系正确的是()A.B.C.D.5.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=06.若将双曲线绕其对称中心顺时针旋转120°后可得到某一函数的图象,且该函数在区间上存在最小值,则双曲线C的离心率为()A. B.C.2 D.7.已知椭圆与直线交于A,B两点,点为线段的中点,则a的值为()A. B.3C. D.8.在四棱锥中,分别为的中点,则()A. B.C. D.9.如图,四面体-,是底面△的重心,,则()A B.C. D.10.为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60 B.120C.150 D.24011.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.12.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.12二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______14.下列说法中,正确的有_________(填序号).①“”是“方程表示椭圆”的必要而不充分条件;②若:,则:;③“,”的否定是“,”;④若命题“”为假命题,则命题一定是假命题;⑤是直线:和直线:垂直的充要条件.15.已知正方体的棱长为6,E为棱的中点,F为棱上的点,且,则___________.16.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.18.(12分)设等比数列的前项和为,且()(1)求数列的通项公式;(2)在与之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:19.(12分)某企业为响应“安全生产”号召,将全部生产设备按设备安全系数分为A,两个等级,其中等设备安全系数低于A等设备.企业定时对生产设备进行检修,并将部分等设备更新成A等设备.据统计,2020年底该企业A等设备量已占全体设备总量的30%.从2021年开始,企业决定加大更新力度,预计今后每年将16%的等设备更新成A等设备,与此同时,4%的A等设备由于设备老化将降级成等设备.(1)在这种更新制度下,在将来的某一年该企业的A等设备占全体设备的比例能否超过80%?请说明理由;(2)至少在哪一年底,该企业的A等设备占全体设备的比例超过60%.(参考数据:,,)20.(12分)已知直线:,直线:(1)若,之间的距离为3,求c的值:(2)求直线截圆C:所得弦长21.(12分)已知点,,双曲线C上除顶点外任一点满足直线RM与QM的斜率之积为4.(1)求C方程;(2)若直线l过C上的一点P,且与C的渐近线相交于A,B两点,点A,B分别位于第一、第二象限,,求的最小值.22.(10分)如图,在正四棱柱中,,,点在棱上,且平面(1)求的值;(2)若,求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D2、C【解析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C3、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A4、C【解析】根据导数的几何意义可得答案.【详解】因为函数在某点处的导数值表示的是此点处切线的斜率,所以由图可得,故选:C5、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D6、C【解析】由题意,可知双曲线的一条渐近线的倾斜角为120°,再确定参数的正负即可求解.【详解】双曲线,令,则,显然,则一条渐近线方程为,绕其对称中心顺时针旋转120°后可得到某一函数的图象,则渐近线就需要旋转到与坐标轴重合,故渐近线方程的倾斜角为120°,即,该函数在区间上存在最小值,可知,所以,所以.故选:C7、A【解析】先联立直线和椭圆的方程,结合中点公式及点可求a的值.【详解】设,联立,得,,因为点为线段的中点,所以,即,解得,因为,所以.故选:A.8、A【解析】结合空间几何体以及空间向量的线性运算即可求出结果.【详解】因为分别为的中点,则,,,故选:A.9、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B10、C【解析】结合排列组合的知识,分两种情况求解.【详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C11、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.12、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.14、①【解析】根据椭圆方程的结构特征可判断①;注意到分式不等式分母不等于0可判断②;由全称命题的否定可判断③;根据复合命题的真假可判断④;由直线垂直的充要条件可判断⑤.【详解】①中,当时,方程为,表示圆,若方程表示椭圆,则,解得或,故①正确;②中,,故为:,而,故②不正确;③中,“,”的否定应为“,”,故③不正确;④中,若命题“”为假命题,有可能为真或为假,故④不正确;⑤中,,解得或,故是直线:和直线:垂直的充分不必要条件,故⑤不正确.故答案为:①15、18【解析】建立空间直角坐标系,利用空间向量的数量积运算求解.【详解】建立如图所示空间直角坐标系:则,所以,所以,故答案为:1816、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意作出图形,然后求出关于直线的对称点,进而根据圆的性质求出到圆上的点的最短距离即可;(2)将直线方程代入圆的方程并化简,进而结合韦达定理求得答案.【小问1详解】若军营所在区域为,圆:的圆心为原点,半径为,作图如下:设将军饮马点为,到达营区点为,设为A关于直线的对称点,因为,所以线段的中点为,则,又,联立解得:,即,所以总路程,要使得总路程最短,只需要最短,即点到圆上的点的最短距离,即为.【小问2详解】过点A倾斜角为45°的直线方程为:,设两个交点,联立,消去y得.由韦达定理,,.18、(1)(2)见解析【解析】(1)由两式相减得,所以()因为等比,且,所以,所以故(2)由题设得,所以,所以,则,所以19、(1)A等设备量不可能超过生产设备总量的80%,理由见解析;(2)在2025年底实现A等设备量超过生产设备总量的60%.【解析】(1)根据题意表示出2020年开始,经过年后A等设备量占总设备量的百分比为,求出,根据的范围进行判断;(2)令>即可求解.【小问1详解】记该企业全部生产设备总量为“1”,2020年开始,经过年后A等设备量占总设备量的百分比为,则经过1年即2021年底该企业A等设备量,,可得,又所以数列是以为首项,公比为的等比数列,可得,所以,显然有,所以A等设备量不可能超过生产设备总量的80%.【小问2详解】由,得.因为单调递减,又,,所以在2025年底实现A等设备量超过生产设备总量的60%.20、(1)或(2)【解析】(1)根据两条平行直线的距离公式列方程,化简求得的值.(2)利用弦长公式求得.【小问1详解】因为两条平行直线:与:间的距离为3,所以解得或.【小问2详解】圆C:,圆心为,半径为.圆心到直线的距离为,所以弦长21、(1)(2)1【解析】(1)由题意得,化简可得答案,(2)求出渐近线方程,设点,,,,,由可得,代入双曲线方程化简可得,然后表示的坐标,再进行数量积运算,化简后利用基本不等式可得答案【小问1详解】由题意得,即,整理得,因为双曲线的顶点坐标满足上式,所以C的方程为.【小问2详解】由(1)可知,曲线C的渐近线方程为,设点,,,,,由,得,整理得,①,把①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025数据中心空调安装工程分包合同
- 2025年小型挖机买卖合同范本
- 2025年土地整治项目合同
- 2025家具订购合同书模板
- 2025年光纤和特种光缆项目建议书
- 山体防汛施工方案
- 碎裂地板施工方案
- 标志板施工方案
- 商场橱窗施工方案
- 高温限电施工方案
- 接触网工复习题库及答案
- 儿童泌尿道感染(课堂PPT)
- 全国压力容器设计单位名录
- 特变电工-财务报表分析课件
- 人民医院人才队伍建设规划人才队伍建设五年规划
- 一年级语文下册课件-21 小壁虎借尾巴24-部编版(15张PPT)
- 患者随访率低原因分析以及对策
- 油田相关业务的税制及税率
- 计量认证实验室程序文件(全套)
- DGC型瓦斯含量直接测定装置使用说明书
- 普通座式焊接变位机工装设计全套图纸
评论
0/150
提交评论