甘肃省白银市会宁四中2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
甘肃省白银市会宁四中2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
甘肃省白银市会宁四中2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
甘肃省白银市会宁四中2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
甘肃省白银市会宁四中2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省白银市会宁四中2024届高二数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,的值域为()A. B.C. D.2.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列3.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.4.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④5.已知集合,,则A. B.C. D.6.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.27.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-98.若函数f(x)=x2+x+1在区间内有极值点,则实数a的取值范围是()A. B.C. D.9.已知直线和圆相交于两点.若,则的值为()A. B.C. D.10.已知平面上两点,则下列向量是直线的方向向量是()A. B.C. D.11.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或12.抛物线的焦点为F,点为该抛物线上的动点,点A是抛物线的准线与坐标轴的交点,则的最大值是()A.2 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线:与直线:平行,则的值为___________.14.已知直线,圆,若直线与圆相交于两点,则的最小值为______15.经过点,圆心在x轴正半轴上,半径为5的圆的方程为________16.假设要考查某公司生产的袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个的样本个体的编号是______(下面摘取了随机数表第7行到第9行)844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.18.(12分)在下列所给的三个条件中任选一个,补充在下面的问题中,并加以解答①过(-1,2);②与直线平行;③与直线垂直问题:已知直线过点M(3,5),且______(1)求的方程;(2)若与圆相交于点A、B,求弦AB的长19.(12分)如图,在四棱锥S−ABCD中,底面ABCD为矩形,,AB=2,,平面,,,E是SA的中点(1)求直线EF与平面SCD所成角的正弦值;(2)在直线SC上是否存在点M,使得平面MEF平面SCD?若存在,求出点M的位置;若不存在,请说明理由20.(12分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值21.(12分)如图,矩形的两个顶点位于x轴上,另两个顶点位于抛物线在x轴上方的曲线上,求矩形面积最大时的边长.22.(10分)已知函数(1)若,求曲线在处的切线方程(2)讨论函数的单调性

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.2、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B3、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.4、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题5、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.6、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B7、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D8、C【解析】若f(x)=x2+x+1在区间内有极值点,则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+.因为x∈,y=x+的值域是,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是,故选C.9、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.10、D【解析】由空间向量的坐标运算和空间向量平行的坐标表示,以及直线的方向向量的定义可得选项.【详解】解:因为两点,则,又因为与向量平行,所以直线的方向向量是,故选:D.11、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.12、B【解析】设直线的倾斜角为,设垂直于准线于,由抛物线的性质可得,则,当直线PA与抛物线相切时,最小,取得最大值,设出直线方程得到直线和抛物线相切时的点P的坐标,然后进行计算得到结果.【详解】设直线的倾斜角为,设垂直于准线于,由抛物线的性质可得,所以则,当最小时,则值最大,所以当直线PA与抛物线相切时,θ最大,即最小,由题意可得,设切线PA的方程为:,,整理可得,,可得,将代入,可得,所以,即P的横坐标为1,即P的坐标,所以,,所以的最大值为:,故选:B【点睛】关键点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.14、【解析】求出直线过的定点,当圆心和定点的连线垂直于直线时,取得最小值,结合即可求解.【详解】由题意知,圆,圆心,半径,直线,,,解得,故直线过定点,设圆心到直线的距离为,则,可知当距离最大时,有最小值,由图可知,时,最大,此时,此时.故的最小值为.故答案为:.15、【解析】设圆方程为,代入原点计算得到答案.【详解】设圆方程为经过点,代入圆方程则圆方程为故答案为【点睛】本题考查了圆方程的计算,设出圆方程是解题的关键.16、【解析】根据随机数表法依次列举出来即可.【详解】根据随机数表法最先检测的3袋牛奶编号为:331、572、455、068.故答案为:068.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题设条件,结合等差数列通项公式求基本量d,进而写出通项公式.(2)由(1)得,应用累加法、错位相减法及等比数列前n项和公式求的通项公式.【小问1详解】令公差为d,由得:,解得.所以.【小问2详解】,则,累加整理,得:,①,②②-①得:,又满足上式,故.18、(1)(2)【解析】(1)可依次根据直线方程的点斜式、“两直线平行,斜率相等”、“两直线垂直,斜率相乘为-1”求直线l的方程;(2)利用垂径定理即可求圆的弦长.【小问1详解】选条件①:∵直线过点(3,5)及(-1,2),∴直线的斜率为,依题意,直线的方程为,即;选条件②:∵直线的斜率为,直线与直线平行,∴直线的斜率为,依题意,直线的方程为;即;选条件③:∵直线的斜率为,直线与直线垂直,∴直线的斜率为,依题意,直线的方程为,即;【小问2详解】圆心为(2,3),半径为2,圆心到直线的距离为∴19、(1)(2)存在,M与S重合【解析】(1)分别取AB,BC中点M,N,易证两两互相垂直,以为正交基底,建立空间直角坐标系,先求得平面SCD的一个法向量,再由求解;(2)假设存在点M,使得平面MEF平面SCD,再求得平面MEF的一个法向量,然后由求解.小问1详解】解:分别取AB,BC中点M,N,则,又平面则两两互相垂直,以为正交基底,建立如图所示的空间直角坐标系,,所以,设平面SCD的一个法向量为,,,则,,直线EF与平面SBC所成角的正弦值为.【小问2详解】假设存在点M,使得平面MEF平面SCD,,,设平面MEF的一个法向量,,令,则,平面MEF平面SCD,,,存在点,此时M与S重合.20、(1)(2)【解析】(1)由题意,求出的值,然后根据导数的几何意义即可求解;(2)根据导数与函数单调性关系,判断函数在区间上的单调性,从而即可求解.【小问1详解】解:由题意,,因为,所以,解得,所以,,因为,,所以曲线在点处的切线方程为,即;【小问2详解】解:因为,,所以时,,时,,所以在上单调递减,在上单调递增,所以,即函数在区间上的最小值为.21、当矩形面积最大时,矩形边AB长,BC长【解析】先设出点坐标,进而表示出矩形的面积,通过求导可求出其最大面积.【详解】设点,那么矩形面积,.令解得(负舍).所以S在(0,)上单调递增,在(,2)上单调递;..所以当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论