版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广雅中学、执信、六中、深外四校2024届数学高二上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若点是函数图象上的动点(其中的自然对数的底数),则到直线的距离最小值为()A. B.C. D.2.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.3.在空间直角坐标系中,,,平面的一个法向量为,则平面与平面夹角的正弦值为()A. B.C. D.4.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等5.若,,,则a,b,c与1的大小关系是()A. B.C. D.6.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.7.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.8.正方体的表面积为,则正方体外接球的表面积为(
)A. B.C. D.9.如图,已知双曲线的左右焦点分别为、,,是双曲线右支上的一点,,直线与轴交于点,的内切圆半径为,则双曲线的离心率是()A. B.C. D.10.已知数列满足,则()A. B.1C.2 D.411.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.12.酒驾是严重危害交通安全的违法行为.根据国家有关规定:100血液中酒精含量在20~80之间为酒后驾车,80及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为()(参考数据:,)A.6 B.7C.8 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前n项和,则其通项公式______14.二进制数转化成十进制数为______.15.若椭圆的一个焦点为,则p的值为______16.如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,且离心率.(1)求椭圆C的标准方程;(2)若动点在椭圆上,且在第一象限内,点分别为椭圆的左、右顶点,直线分别与椭圆C交于点,过作直线的平行线与椭圆交于点,问直线是否过定点,若经过定点,求出该定点的坐标;若不经过定点,请说明理由.18.(12分)已知点P到点的距离比它到直线的距离小1.(1)求点P的轨迹方程;(2)点M,N在点P的轨迹上且位于x轴的两侧,(其中O为坐标原点),求面积的最小值.19.(12分)已知圆,直线(1)判断直线l与圆C的位置关系;(2)过点作圆C的切线,求切线的方程20.(12分)已知椭圆的离心率为,以椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积为(1)求椭圆C的标准方程;(2)过点作直线l与椭圆C相切于点Q,且直线l斜率大于0,过线段PQ的中点R作直线交椭圆于A,B两点(点A,B不在y轴上),连结PA,PB,分别与椭圆交于点M,N,试判断直线MN的斜率是否为定值;若是,请求出该定值21.(12分)如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离22.(10分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为(1)求椭圆的方程;(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点且(为原点),求直线的斜率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,,设与平行且与相切的直线与切于,由导数的几何意义可求出点的坐标,则到直线的距离最小值为点到直线的距离,再求解即可.【详解】解:设,,设与平行且与相切的直线与切于所以所以则到直线的距离为,即到直线的距离最小值为,故选:A2、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.3、A【解析】根据给定条件求出平面的法向量,再借助空间向量夹角公式即可计算作答.【详解】设平面的法向量为,则,令,得,令平面与平面夹角为,则,,所以平面与平面夹角的正弦值为.故选:A4、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.5、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.6、D【解析】用向量分别表示,利用向量的夹角公式即可求解.【详解】由题意可得,故选:D【点睛】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.7、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B8、B【解析】由正方体表面积求得棱长,再求得正方体的对角线长,即为外接球的直径,从而可得球表面积【详解】设正方体棱长为,由得,正方体对角线长,所以其外接球半径为,球表面积为故选:B9、D【解析】根据给定条件结合直角三角形内切圆半径与边长的关系求出双曲线实半轴长a,再利用离心率公式计算作答.【详解】依题意,,的内切圆半径,由直角三角形内切圆性质知:,由双曲线对称性知,,于是得,即,又双曲线半焦距c=2,所以双曲线的离心率.故选:D【点睛】结论点睛:二直角边长为a,b,斜边长为c的直角三角形内切圆半径.10、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B11、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C12、C【解析】根据题意列出不等式,利用指对数幂的互化和对数的运算公式即可解出不等式.【详解】设该驾驶员至少需经过x个小时才能驾驶汽车,则,所以,则,所以该驾驶员至少需经过约8个小时才能驾驶汽车.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用当时,,可求出此时的通项公式,验证n=1时是否适合,可得答案.【详解】当时,,当时,不适合上式,∴,故答案为:.14、13【解析】根据二进制数和十进制数之间的转换方法即可求解.【详解】.故答案为:13.15、3【解析】利用椭圆标准方程概念求解【详解】因为焦点为,所以焦点在y轴上,所以故答案:316、①.②.【解析】根据题意,,进而得,,故最小距离为;进而建立坐标系,得抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,此时设玻璃球轴截面所在圆的方程为,进而只需满足抛物线上的点到圆心的距离大于等于半径恒成立,再根据几何关系求解即可.【详解】因为杯口放一个表面积为的玻璃球,所以球的半径为,又因为杯口宽cm,所以如图1所示,有,所以,所以,所以,又因为杯深8cm,即故最小距离为如图1所示,建立直角坐标系,易知,设抛物线的方程为,所以将代入得,故抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为,依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即,则有恒成立,解得,可得.所以玻璃球的半径的取值范围为.故答案为:;【点睛】本题考查抛物线的应用,考查数学建模能力,运算求解能力,是中档题.本题第二问解题的关键在于设出球触及酒杯底部的轴截面圆的方程,进而将问题转化为抛物线上的点到圆心的距离大于等于半径恒成立求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)过定点,【解析】(1)根据椭圆上的点及离心率求出a,b即可;(2)设点,设直线的方程为,联立方程,得到根与系数的关系,利用条件化简,结合椭圆方程,求出即可得解.【小问1详解】由,有,又,所以,椭圆C的标准方程为.【小问2详解】设点,设直线的方程为.如图,联立,消有:,韦达定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直线不过右端点,所以,则,所以直线过定点.18、(1);(2).【解析】(1)根据给定条件可得点P到点的距离等于它到直线的距离,再由抛物线定义即可得解.(2)由(1)设出点M,N的坐标,再结合给定条件及三角形面积定理列式,借助均值不等式计算作答.【小问1详解】因点P到点的距离比它到直线的距离小1,显然点P与F在直线l同侧,于是得点P到点的距离等于它到直线的距离,则点P的轨迹是以F为焦点,直线为准线的抛物线,所以点P的轨迹方程是.【小问2详解】由(1)设点,,且,因,则,解得,S,当且仅当,即时取“=”,所以面积的最小值为.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.19、(1)相交.(2)或.【解析】(1)先判断出直线恒过定点(2,1),由(2,1)在圆内,即可判断;(2)分斜率存在与不存在两种情况,利用几何法求解.【小问1详解】直线方程,即,则直线恒过定点(2,1).因为,则点(2,1)位于圆的内部,故直线与圆相交.【小问2详解】直线斜率不存在时,直线满足题意;②直线斜率存在的时候,设直线方程为,即.因为直线与圆相切,所以圆心到直线的距离等于半径,即,解得:,则直线方程为:.综上可得,直线方程或.20、(1)(2)是,【解析】(1)根据离心率以及椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积列出等式即可求解;(2)设出相关直线与相关点的坐标,直线与椭圆联立,点的坐标配合斜率公式化简,再运用韦达理化简可证明.【小问1详解】由题意得,解得,则椭圆C的标准方程为【小问2详解】设切线PQ的方程为,,,,,由,消去y得①,则,解得或(舍去),将代入①得,,解得,则,所以,又R为PQ中点,则,因为PA,PB斜率都存在,不妨设,,由①可得,所以,,同理,,则,又R,A,B三点共线,则,化简得,所以.21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,进而求出平面BEF的法向量,然后证明线面平行;(2)算出在向量方向上的投影,进而求得答案.【小问1详解】因为DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因为ABCD是正方形,所以DA⊥DC.以D为坐标原点,所在方向分别为轴的正方向建立空间直角坐标系,则A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(2,0,1),所以,,设平面BEF的法向量,因为,所以-2x-2y+2z=0,-2y+z=0,令y=1,则=(1,1,2),又因为=(-2,2,0),所以,即,而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程棉被供销合同范本
- 房产前期顾问合同范本
- 广告租赁标准合同范本
- 工程安全协议合同范本
- 委托外墙清洗合同范本
- 市场工作人员合同范本
- 执医注册聘用合同范本
- 房子材料购买合同范本
- 承包整厂拆除合同范本
- 移动通信基站综合防雷设计方案电子教案
- 财务审计工作程序及风险防范措施
- 健康管理师考试题库及答案题库大全
- 刮板链式运输机三级圆锥齿轮减速器设计
- 雨课堂学堂云在线《中国传统艺术-篆刻、书法、水墨画体验与欣赏(哈工 )》单元测试考核答案
- 公墓骨灰安葬协议书
- 2025国家粮食储备局考试真题与答案
- 2025年汽车后市场汽车维修行业技术更新换代趋势可行性研究报告
- 2024年一建网络图案例专题
- 2025深圳生物会考试卷及答案
- 水泥厂安全检查表
- 预制管桩防挤施工方案
评论
0/150
提交评论