版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水市桃城区武邑中学2022-2023学年高考数学试题金榜冲刺卷(二)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.2.已知函数,,若成立,则的最小值是()A. B. C. D.3.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.4.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.5.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是()A.甲得分的平均数比乙大 B.甲得分的极差比乙大C.甲得分的方差比乙小 D.甲得分的中位数和乙相等6.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为()A. B. C. D.7.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.8.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.9.已知集合,,,则()A. B. C. D.10.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A. B. C.5 D.611.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限12.已知等差数列中,则()A.10 B.16 C.20 D.24二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.14.已知函数,则的值为____15.的展开式中,的系数是______.16.在中,角A,B,C的对边分别为a,b,c,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.18.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求边AC的长.19.(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.①求每层应抽取的人数;②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.20.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.21.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.22.(10分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.①求数列的通项公式;②求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.2、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.3、A【解析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.4、D【解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.5、B【解析】
由平均数、方差公式和极差、中位数概念,可得所求结论.【详解】对于甲,;对于乙,,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确.故选:.【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解析】
由三视图可知,该三棱锥如图,其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积;考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.7、B【解析】
由题意知,,由,知,由此能求出.【详解】由题意知,,,解得,,.故选:B.【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.8、A【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.9、A【解析】
求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.10、A【解析】
根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.11、D【解析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.12、C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.14、4【解析】
根据的正负值,代入对应的函数解析式求解即可.【详解】解:.故答案为:.【点睛】本题考查分段函数函数值的求解,是基础题.15、【解析】
先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意,只需求中的系数,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.16、【解析】
利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面积公式以及并结合正弦定理,可得结果.(Ⅱ)根据,可得,然后使用余弦定理,可得结果.【详解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以边.【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.19、(1),,,中位数;(2)①三层中抽取的人数分别为2,5,13;②【解析】
(1)根据频率分布直方表的性质,即可求得,得到,,再结合中位数的计算方法,即可求解.(2)①由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;②由①知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一周课外读书时间的中位数约为小时.(2)①由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,,的频数分别为20,50,130,所以从,,三层中抽取的人数分别为2,5,13.②由①知,在,两层中共抽取7人,设内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,,,,,,,,,,,,,,,,,,,,,共有21种,其中2人不在同一层的情况为,,,,,,,,,,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【点睛】本题主要考查了频率分布直方表的性质,中位数的求解,以及古典概型的概率计算等知识的综合应用,着重考查了分析问题和解答问题的能力,属于基础题.20、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后结合三角形的面积公式可求;(Ⅲ)结合二倍角公式及和角余弦公式即可求解.【详解】(Ⅰ)因为,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因为,所以;(Ⅲ)由于,.所以.【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平.21、(1)极坐标方程为,点的极坐标为(2)【解析】
(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南长沙市望城区乔口镇卫生院面向社会公开招聘乡村医生参考笔试题库附答案解析
- 2025中建交通建设(雄安)有限公司招聘参考考试题库及答案解析
- 2025云南云丘发展集团有限责任公司招聘2人模拟笔试试题及答案解析
- 2025年商丘柘城县消防救援大队招录政府专职消防员53名考试备考题库及答案解析
- 深度解析(2026)《GBT 25949-2010铝土矿 样品制备》(2026年)深度解析
- 深度解析(2026)《GBT 25913-2010信息技术 藏文编码字符集(扩充集B) 24×48点阵字型 吾坚琼体》
- 2025广西南宁市武鸣区陆斡中心卫生院招聘编外工作人员1人备考笔试试题及答案解析
- 2026广州城建职业学院博士专任教师招聘44人备考考试题库及答案解析
- 深度解析(2026)《GBT 25752-2010差压式气密检漏仪》(2026年)深度解析
- 深度解析(2026)《GBT 25663-2010数控龙门移动多主轴钻床》(2026年)深度解析
- 中国淋巴瘤治疗指南(2025年版)
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试模拟试题及答案解析
- 2026年空气污染监测方法培训课件
- 实习2025年实习实习期转正协议合同
- 疗伤旅馆商业计划书
- 购买电影票合同范本
- 2025西部机场集团航空物流有限公司招聘考试笔试备考题库及答案解析
- 2025年广西公需科目答案6卷
- 2025年鲍鱼养殖合作协议合同协议
- 2025智慧消防行业市场深度调研及发展趋势与投资前景预测研究报告
- 船舶入股协议书范本
评论
0/150
提交评论