




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第11章图形的运动(基础、常考、易错、压轴)分类专项训练【基础】一、单选题1.(2021·上海奉贤·七年级期末)下列语句判断正确的是()A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形2.(2022·上海·七年级单元测试)图2是由图1经过某一种图形的运动得到的,这种图形的运动是(
)A.平移 B.翻折 C.旋转 D.以上三种都不对3.(2022·上海·七年级单元测试)如图所示的图案,可以看作由“基本图案”经过平移得到的是()A. B. C. D.4.(2022·上海·七年级单元测试)在下列实例中,①时针运转过程;②火箭升空过程;③地球自转过程;④飞机从起跑到离开地面的过程;不属于平移过程的有()A.1个 B.2个 C.3个 D.4个5.(2022·上海·七年级单元测试)中国汉字中,有的汉字是轴对称图形.下面4个汉字中,是轴对称图形的是()A. B. C. D.6.(2022·上海·七年级单元测试)在图形的旋转中,下列说法不正确的是(
)A.旋转前和旋转后的图形一样 B.图形上的每一个点到旋转中心的距离都相等C.图形上的每一个点旋转的角度都相同 D.图形上可能存在不动的点7.(2022·上海宝山·七年级期末)下列说法正确的是(
)A.轴对称图形是由两个图形组成的 B.等边三角形有三条对称轴C.两个等面积的图形一定轴对称 D.直角三角形一定是轴对称图形8.(2022·上海·七年级期末)如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为(
)A.3cm B.5cm C.8cm D.13cm9.(2022·上海市实验学校西校七年级阶段练习)在直角坐标平面内,已知点B和点A(3,4)关于x轴对称,那么点B的坐标()A.(3,4) B.(﹣3,﹣4) C.(3,﹣4) D.(﹣3,4)10.(2022·上海·七年级专题练习)如图,把图中的经过一定的变换得到,如果图中上的点的坐标为,那么它的对应点的坐标为()A.(a-2, b) B.(a+2, b)C.(-a-2, -b) D.(a+2, -b)11.(2022·上海·七年级单元测试)在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为(
)A.(4,1) B.(4,﹣1) C.(5,1) D.(5,﹣1)12.(2022·上海·七年级单元测试)在学习了平移、旋转、轴对称变换知识后,老师要求同学们在智能俄罗斯方块游戏拼图操作中理解、体会、感悟知识的灵活运用.如图所示的方块拼图游戏中,已拼好了部分图案,现又出现一小方格体正向下运动,为了使移动的小方格与下方图案拼接成一个完整图案,使所有图案自动消失,你的正确操作是(
)A.顺时针旋转90°,向右平移 B.逆时针旋转90°,向右平移C.顺时针旋转90°,向下平移 D.逆时针旋转90°,向下平移二、填空题13.(2022·上海·七年级单元测试)如图,将△ABC的边AB绕着点A顺时针旋转()得到,边AC绕着点A逆时针旋转()得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是______(用含a的代数式表示).14.(2022·上海·七年级期末)把一个图形整体沿某一个方向平移,会得到一个新图形,新图形与原图形相比______和______完全相同.15.(2022·上海·七年级单元测试)如图,已知的三个角,,,,将绕点顺时针旋转得到,如果,那么_______.16.(2022·上海·七年级单元测试)如图,将沿方向平移得到,若的周长为,则四边形的周长为_______.17.(2022·上海·七年级期末)已知线段AB的长度为3厘米,现将线段AB向左平移4厘米得到线段CD,那么线段CD的长度为_____厘米.18.(2022·上海·七年级期末)如果长方形的长和宽不相等,那么它有______条对称轴.19.(2022·上海·七年级期末)如图,顺时针旋转能与重合,且,则旋转角是__________度.20.(2022·上海·七年级期末)小王是学校足球队的成员,他穿着自己的球衣站在镜子前,看到镜子里球衣的号码如图所示,那么他实际的球衣号码是___________.21.(2022·上海·七年级期末)如图,△AOB绕点O顺时针旋转得到△COD,已知点A、O、D在一条直线上,且∠AOB=30°,则旋转角为__________°.22.(2022·上海·七年级期末)等边三角形是旋转对称图形,它至少绕对称中心旋转_________度,才能和本身重合.23.(2022·上海·七年级期末)平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为___________.【常考】一.选择题(共5小题)1.(2020秋•静安区期末)如图,从图形甲到图形乙的运动过程可以是()A.先翻折,再向右平移4格 B.先逆时针旋转90°,再向右平移4格 C.先逆时针旋转90°,再向右平移1格 D.先顺时针旋转90°,再向右平移4格2.(2018秋•浦东新区期末)如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A.70m2 B.60m2 C.48m2 D.18m23.(2018秋•闵行区期末)如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为()A.60° B.120° C.72° D.144°4.(2018秋•宝山区期末)如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A. B. C. D.5.(2018秋•闵行区期末)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字()的格子内.A.1 B.2 C.3 D.4二.填空题(共7小题)6.(2020秋•宝山区期末)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,那么旋转角度的大小为度.7.(2018秋•松江区期末)如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3cm,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为cm.8.(2018秋•崇明区期末)如图,将周长为8cm的△ABC沿BC方向平移1cm得到△DEF,则四边形ABFD的周长为cm.9.(2018秋•杨浦区校级期末)如图,如果四边形CDEF旋转后能与正方形ABCD重合,那么此图所在的平面上可以作为旋转中心的点共有个.10.(2020秋•徐汇区校级月考)如图,镜子中号码的实际号码是.11.(2018秋•嘉定区期末)如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点C与点F是对应点.如果BC=5,EC=2,那么线段AD的长是.12.(2019秋•浦东新区期末)已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为秒.三.解答题(共5小题)13.(2018秋•浦东新区期末)如图,在四边形ABCD中,(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称,若对称请在图中画出对称轴或对称中心.14.(2019秋•奉贤区期末)如图,(1)请画出△ABC关于直线MN的对称图形△A1B1C1.(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O成中心对称的图形△A2B2C2.15.(2018秋•宝山区期末)如图①、②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)16.(2019秋•浦东新区期末)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).17.(2020秋•徐汇区校级月考)请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).【易错】一.选择题(共5小题)1.(2020秋•浦东新区期末)下列四个汉字是轴对称图形的是()A. B. C. D.2.(2020秋•徐汇区校级月考)下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.3.(2021秋•徐汇区月考)下列图案中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.4.(2020秋•嘉定区期末)下列说法中正确的是()A.如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形 B.如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形 C.如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形 D.如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形5.(2020秋•虹口区期末)下列说法正确的是()A.能够互相重合的两个图形成轴对称 B.图形的平移运动由移动的方向决定 C.如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形 D.如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.二.填空题(共3小题)6.(2020秋•嘉定区期末)在线段、角、长方形、圆这四个图形中,是轴对称图形但不是中心对称图形的是.7.(2020秋•松江区期末)如图,在2×2的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个不同的格点三角形与△ABC成轴对称.8.(2020秋•浦东新区期末)如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.三.解答题(共1小题)9.(2021秋•普陀区期末)如图,已知四边形ABCD和直线MN.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2的位置关系是.【压轴】一、单选题1.(2022·上海·七年级单元测试)如图所示,正方形ABCD的边长为a,正方形ABCD的面积记作,取各边中点,顺次连接得到的正方形面积记作,以此类推,则可用含a的代数式表示为(
)A. B. C. D.二、解答题2.(2021·上海·七年级专题练习)在△ABC中,∠C=90°,∠BAC=60°,△ABC绕点C顺时针旋转,旋转角为α(0°<α<180°),点A、B的对应点分别是点D、E.(1)如图1,当点D恰好落在边AB上时,试判断DE与AC的位置关系,并说明理由.(2)如图2,当点B、D、E三点恰好在一直线上时,旋转角α=__°,此时直线CE与AB的位置关系是__.(3)在(2)的条件下,联结AE,设△BDC的面积S1,△AEC的面积S2,则S1与S2的数量关系是_____.(4)如图3,当点B、D、E三点不在一直线上时,(3)中的S1与S2的数量关系仍然成立吗?试说明理由.3.(2022·上海·七年级期末)如图,正方形,点是线段延长线一点,连结,,(1)将线段沿着射线运动,使得点与点重合,用代数式表示线段扫过的平面部分的面积.(2)将三角形绕着点旋转,使得与重合,点落在点,用代数式表示线段扫过的平面部分的面积.(3)将三角形顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角4.(2021·上海·七年级专题练习)如图Z字形图形的顶点,在小方格顶点上,小方格的边长为一个单位长度。按下列要求画出图形。(1)画出Z字形图形,关于对角线MN对称的图形;(2)画出Z字形图形关于点O对称的图形,所画出的图形还可以用原Z字形图形通过怎样的运动得到?请你完整地描述其具体的运动过程.5.(2021·上海·七年级专题练习)如图,已知三角形纸片,将纸片折叠,使点与点重合,折痕分别与边交于点.(1)画出直线;(2)若点关于直线的对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实战网络管理员考试试题及答案
- 软件设计师考试动手实践训练方法试题及答案
- 激励幼儿积极参与的活动设计计划
- 跨学科整合品德教育的路径计划
- 云计算与网络安全试题及答案
- 2024年上海海事大学辅导员考试真题
- 2024年江苏省医疗保障局下属事业单位真题
- 2024年绍兴市科学技术局招聘笔试真题
- 2024年内江师范学院选调工作人员笔试真题
- 行政法学历年试题及答案回顾
- 智能化时代的创新创业教育知到课后答案智慧树章节测试答案2025年春渭南职业技术学院
- 2024年数字化管理试题及答案
- 食品安全自查、从业人员健康管理、进货查验记录、食品安全事故处置保证食品安全的规章制度
- 温州护士面试试题及答案
- 《基于单片机的家用万能遥控器设计5800字(论文)》
- TCHSA 090-2024 年轻恒牙根尖诱导成形术操作专家共识
- 2025年农业合作社廉政风险点及防控措施
- 20以内乘法除法口算练习卷1000道可打印
- 《城市轨道交通行车组织》教案 项目四任务二 ATC设备故障时的列车运行组织
- 生化检验项目选择与临床
- 民警心理减压培训
评论
0/150
提交评论