2023-2024学年山东省泰安第十九中学高一上数学期末经典试题含解析_第1页
2023-2024学年山东省泰安第十九中学高一上数学期末经典试题含解析_第2页
2023-2024学年山东省泰安第十九中学高一上数学期末经典试题含解析_第3页
2023-2024学年山东省泰安第十九中学高一上数学期末经典试题含解析_第4页
2023-2024学年山东省泰安第十九中学高一上数学期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省泰安第十九中学高一上数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.设:,:,则是的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.已知向量,满足,,且与的夹角为,则()A. B.C. D.3.已知方程的两根为与,则()A.1 B.2C.4 D.64.设集合,则A. B.C. D.5.如果函数对任意的实数x,都有,且当时,,那么函数在的最大值为A.1 B.2C.3 D.46.的定义域为()A. B.C. D.7.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.8.函数的部分图象如图所示,则的值为()A. B.C. D.9.已知,若,则()A. B.C. D.10.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到11.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角12.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.14.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.15.设奇函数对任意的,,有,且,则的解集___________.16.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中三、解答题(本大题共6小题,共70分)17.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.18.为何值时,直线与:(1)平行(2)垂直19.已知A(2,0),B(0,2),,O为坐标原点(1),求sin2θ的值;(2)若,且θ∈(-π,0),求与的夹角20.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a21.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点22.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】解出不等式,根据集合的包含关系,可得到答案.【详解】解:因为:,所以:或,因为:,所以是的充分不必要条件.故选:B【点睛】本题考查了充分不必要条件的判断,两个命题均是范围形式,解决问题常见的方法是判断出集合之间包含关系.2、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.3、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D4、C【解析】集合,根据元素和集合的关系知道故答案为C5、C【解析】由题意可得的图象关于直线对称,由条件可得时,为递增函数,时,为递减函数,函数在递减,即为最大值,由,代入计算可得所求最大值【详解】函数对任意的实数x,都有,可得的图象关于直线对称,当时,,且为递增函数,可得时,为递减函数,函数在递减,可得取得最大值,由,则在的最大值为3故选C【点睛】本题考查函数的最值求法,以及函数对称性和单调性,以及对数的运算性质的应用,属于中档题.将对称性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据对称性判断出函数在对称区间上的单调性(轴对称函数在对称区间上单调性相反,中心对称函数在对称区间单调性相同),然后再根据单调性求解.6、C【解析】由对数函数的性质及分式的性质解不等式即可得解.【详解】由题意得,解得,所以的定义域为.故选:C.【点睛】本题考查了具体函数定义域的求解,属于基础题.7、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确8、C【解析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【点睛】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.9、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.10、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.11、D【解析】由求出,结合不等式性质即可求解.【详解】,,,在第四象限.故选:D12、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C二、填空题(本大题共4小题,共20分)13、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:14、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.15、【解析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性16、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)见解析【解析】分析:(1)利用第二个式子,结合同角三角函数的平方关系,以及正弦的倍角公式,结合特殊角的三角函数值,求得结果;(2)根据题中所给的角之间的关系,归纳推理得到结果,证明过程应用相关公式证明即可.详解:(1).(2).证明如下:.点睛:该题考查是有关三角公式的问题,涉及到的知识点有同角三角函数的关系式,正弦的倍角公式,余弦的差角公式等,正确使用公式是解题的关键.18、(1)或;(2).【解析】利用直线与直线平行与垂直的性质即可求出参数a的值.特别注意直线斜率不存在的情况.【详解】(1)当或时,两直线即不平行,也不垂直.当且,直线的斜率,在轴上的截距;直线的斜率,在轴上的截距.由,且,即,且,得或,当或时,两直线平行.(2)由,即,得.当时,两直线垂直【点睛】本题主要考查直线与直线平行与垂直的性质,属于基础题型.19、(1);(2)【解析】分析:(1)先根据向量数量积得sinθ+cosθ值,再平方得结果,(2)先根据向量的模得cosθ,即得C点坐标,再根据向量夹角公式求结果.详解:(1)∵=(cosθ,sinθ)-(2,0)=(cosθ-2,sinθ),=(cosθ,sinθ)-(0,2)=(cosθ,sinθ-2),=cosθ(cosθ-2)+sinθ(sinθ-2)=cos2θ-2cosθ+sin2θ-2sinθ=1-2(sinθ+cosθ)=-∴sinθ+cosθ=,∴1+2sinθcosθ=,∴sin2θ=-1=-.(2)∵=(2,0),=(cosθ,sinθ),∴+=(2+cosθ,sinθ),∵|+|=,所以4+4cosθ+cos2θ+sin2θ=7,∴4cosθ=2,即cosθ=.∵-π<θ<0,∴θ=-,又∵=(0,2),=,∴cos〈,〉=,∴〈,〉=.点睛:向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,通过解三角求得结果.20、(1)对称轴为,单调减区间(2)【解析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可;(2)由正弦函数的性质得出函数的最大值与最小值,进而得出.【小问1详解】由可得,函数的对称轴为由可得,即单调减区间为【小问2详解】21、(1);(2)有两个零点,分别为和【解析】(1)由函数为偶函数得即可求实数的值;(2),计算令,则即可.试题解析:(1)解:∵是定义在上的偶函数.∴,即故.经检验满足题意(2)依题意.则由,得,令,则解得.即.∴函数有两个零点,分别为和.22、(1),;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论