2024届山西省长治市屯留县第一中学校高一数学第一学期期末复习检测模拟试题含解析_第1页
2024届山西省长治市屯留县第一中学校高一数学第一学期期末复习检测模拟试题含解析_第2页
2024届山西省长治市屯留县第一中学校高一数学第一学期期末复习检测模拟试题含解析_第3页
2024届山西省长治市屯留县第一中学校高一数学第一学期期末复习检测模拟试题含解析_第4页
2024届山西省长治市屯留县第一中学校高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省长治市屯留县第一中学校高一数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合的真子集有()个A.3 B.4C.7 D.82.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,3.如果且,那么直线不经过()A第一象限 B.第二象限C.第三象限 D.第四象限4.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最合适的是()x1.992345.156.126y1.514.047.5112.0318.01A. B.C. D.5.函数的最小值为()A. B.3C. D.6.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则7.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年8.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C D.9.函数的图像可能是()A. B.C. D.10.平行四边形中,若点满足,,设,则A. B.C. D.11.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.12.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(本大题共4小题,共20分)13.若,,则______14.已知直线,直线若,则______________15.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.16.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)三、解答题(本大题共6小题,共70分)17.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.18.如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.(1)求证:BD⊥平面ECD;(2)求D点到面CEB的距离.19.已知函数在区间上有最大值,最小值,设.(1)求值;(2)若不等式在时恒成立,求实数的取值范围.20.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.21.如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=CD=1,BC=2,PD=(Ⅰ)求证:PD⊥平面PBC;(Ⅱ)求直线AB与平面PBC所成角的大小;(Ⅲ)求二面角P-AB-C的正切值22.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU(A∩B)={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:CU(A∩B)={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题2、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.3、C【解析】由条件可得直线的斜率的正负,直线在轴上的截距的正负,进而可得直线不经过的象限【详解】解:由且,可得直线斜率为,直线在y轴上的截距,故直线不经过第三象限,故选C【点睛】本题主要考查确定直线位置的几何要素,属于基础题4、B【解析】由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,逐一判断,选择与实际数据接近的函数得选项.【详解】解:由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,对于A,函数是线性增加的函数,与表中的数据增加趋势不符合,故A不正确;对于C,函数,当,与表中数据7.5的误差很大,不符合要求,故C不正确;对于D,函数,当,与表中数据4.04的误差很大,不符合要求,故D不正确;对于B,当,与表中数据1.51接近,当,与表中数据4.04接近,当,与表中数据7.51接近,所以,B选项的函数是最接近实际的一个函数,故选:B5、C【解析】运用乘1法,可得,再利用基本不等式求最值即可.【详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.7、B【解析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B8、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x的不等式,属于基础题9、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.10、B【解析】画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案【详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【点睛】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题11、C【解析】求出幂函数的解析式,然后求解函数值【详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:12、D【解析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【点睛】本题考查了根据三角函数符号判断角所在的象限,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】利用指数的运算性质可求得结果.【详解】由指数的运算性质可得.故答案为:.14、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.15、【解析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.16、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年三、解答题(本大题共6小题,共70分)17、(1)(2)增函数,证明见解析【解析】(1)根据,由求解;(2)利用单调性的定义证明.【小问1详解】解:∵,且,∴,∴;【小问2详解】函数在上是增函数.任取,不妨设,则,,∵且,∴,,,∴,即,∴在上是增函数.18、(1)见解析;(2)点到平面的距离为【解析】(1)根据题意选择,只需证明,根据线面垂直的判定定理,即可证明平面;(2)把点到面的距离,转化为三棱锥的高,利用等体积法,即可求解高试题解析:(1)证明:∵四边形为正方形∴又∵平面平面,平面平面=,∴平面∴又∵,∴平面(2)解:,,,又∵矩形中,DE=1∴,,∴过B做CE的垂线交CE与M,CM=∴的面积等于由得(1)平面∴点到平面的距离∴∴∴即点到平面的距离为.考点:直线与平面垂直的判定与证明;三棱锥的体积的应用.19、(1);(2).【解析】(1)利用二次函数单调性进行求解即可;(2)利用换元法、构造函数法,结合二次函数的性质进行求解即可.【小问1详解】当时,函数的对称轴为:,因此函数当时,单调递增,故所以;【小问2详解】由(1)知,不等式,可化为:即,令,,令,.20、选择见解析;(1);(2)单调递减区间为.【解析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函数在上的单调递减区间为.【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式

函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.

对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sint的性质21、(Ⅰ)见解析;(Ⅱ)30°;(Ⅲ).【解析】(Ⅰ)证明,则,又PD⊥PB即可证明平面(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,DF与平面所成的角等于AB与平面所成的角,为直线DF和平面所成的角,在中,求解即可(Ⅲ)说明是二面角的平面角,在直角梯形ABCD内可求得,而,在中,求解即可【详解】(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD又因为BC∥AD,所以PD⊥BC,又PD⊥PB,PB与BC相交于点B,所以,PD⊥平面PBC.(Ⅱ)过点D作AB的平行线交BC于点F,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论