版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省三门峡市2024届高一数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则2.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.3.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数,若,则实数a的值为()A.1 B.-1C.2 D.-25.化简()A. B.C. D.6.计算A.-2 B.-1C.0 D.17.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a28.已知,则x等于A. B.C. D.9.已知函数,则下列关于函数的说法中,正确的是()A.将图象向左平移个单位可得到的图象B.将图象向右平移个单位,所得图象关于对称C.是函数的一条对称轴D.最小正周期为10.若函数是函数(且)的反函数,且,则()A. B.C. D.11.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)12.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.二、填空题(本大题共4小题,共20分)13.在平面直角坐标系中,点在单位圆O上,设,且.若,则的值为______________.14.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度15.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).16.我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________.834159672三、解答题(本大题共6小题,共70分)17.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?18.函数在一个周期内的图象如图所示,O为坐标原点,M,N为图象上相邻的最高点与最低点,也在该图象上,且(1)求的解析式;(2)的图象向左平移1个单位后得到的图象,试求函数在上的最大值和最小值19.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点20.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围21.如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求证:BC⊥AF;(2)求几何体EF-ABCD的体积22.运货卡车以千米/时的速度匀速行驶300千米,按交通法规限制(单位千米/时),假设汽车每小时耗油费用为元,司机的工资是每小时元.(不考虑其他因所素产生的费用)(1)求这次行车总费用(元)关于(千米/时)的表达式;(2)当为何值时,这次行车的总费用最低?求出最低费用的值
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】利用空间位置关系的判断及性质定理进行判断或举反例判断【详解】对于A,若n⊂平面α,显然结论错误,故A错误;对于B,若m⊂α,n⊂β,α∥β,则m∥n或m,n异面,故B错误;对于C,若m⊥n,m⊥α,n⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C正确;对于D,若α⊥β,m⊂α,n⊂β,则m,n位置关系不能确定,故D错误故选C【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题2、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误3、A【解析】根据充分性、必要性的定义,结合特例法进行判断即可.【详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A4、B【解析】首先求出的解析式,再根据指数对数恒等式得到,即可得到方程,解得即可;【详解】解:根据题意,,则有,若,即,解可得,故选:B5、D【解析】利用辅助角公式化简即可.【详解】.故选:D6、C【解析】.故选C.7、B【解析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B8、A【解析】把已知等式变形,可得,进一步得到,则x值可求【详解】由题意,可知,可得,即,所以,解得故选A【点睛】本题主要考查了有理指数幂与根式的运算,其中解答中熟记有理指数幂和根式的运算性质,合理运算是解答的关键,着重考查了运算与求解能力,属于基础题.9、C【解析】根据余弦型函数的图象变换性质,结合余弦型函数的对称性和周期性逐一判断即可.【详解】A:图象向左平移个单位可得到函数的解析式为:,故本选项说法不正确;B:图象向右平移个单位,所得函数的解析式为;,因为,所以该函数是偶函数,图象不关于原点对称,故本选项说法不正确;C:因为,所以是函数的一条对称轴,因此本选项说法正确;D:函数的最小正周期为:,所以本选项说法不正确,故选:C10、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.11、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.12、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.二、填空题(本大题共4小题,共20分)13、【解析】由题意,,,只需求出即可.【详解】由题意,,因为,所以,,所以.故答案为:【点睛】本题考查三角恒等变换中的给值求值问题,涉及到三角函数的定义及配角的方法,考查学生的运算求解能力,是一道中档题.14、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④15、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.16、8【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法492、357、816;276、951、438;294、753、618;438、951、276;816、357、492;618、753、294;672、159、834;834、159、672故答案为:8三、解答题(本大题共6小题,共70分)17、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额为:当时,;当时,故,【小问2详解】解:当时,,当时,,当时,,当且仅当,即时,等号成立,因为,所以当(千部)时,所获利润最大,最大利润为:3800万元.18、(1)(2)最大值和最小值分别为和【解析】(1)连接交轴于点,过点作于点,设,通过勾股定理计算出和,再结合也在该图象上可求解;(2)根据平移得到,再化简得,从而可求最值.【小问1详解】连接交轴于点,过点作于点.设,则有,即,所以,,因此,所以有,解得,所以,又因为其过,则,又,从而得,所以.【小问2详解】由向左平移1个单位后,得,所以.因为,则,所以当时有最小值,;当时有最大值,.19、(1);(2)有两个零点,分别为和【解析】(1)由函数为偶函数得即可求实数的值;(2),计算令,则即可.试题解析:(1)解:∵是定义在上的偶函数.∴,即故.经检验满足题意(2)依题意.则由,得,令,则解得.即.∴函数有两个零点,分别为和.20、(1),;(2)【解析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)21、(1)详见解析;(2).【解析】(1)推导出FC⊥CD,FC⊥BC,AC⊥BC,由此BC⊥平面ACF,从而BC⊥AF(2)推导出AC=BC=2,AB4,从而AD=BCsin∠ABC=22,由V几何体EF﹣ABCD=V几何体A﹣CDEF+V几何体F﹣ACB,能求出几何体EF﹣ABCD的体积【详解】(1)因为平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四边形CDEF是正方形,所以FC⊥CD,FC⊂平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因为△ACB是腰长为2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因为△ABC是腰长为2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因为DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V几何体EF-ABCD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33439-2016全地形车操纵装置的型式、位置及基本要求》
- 医疗数据安全治理的区块链监管框架
- 医疗数据安全成熟度模型提升策略
- 医疗数据安全培训的区块链技术应用实践手册
- 胫神经损伤课件
- 医疗数据安全合规性风险应对体系建设
- 2026届郑州第一中学高三生物第一学期期末考试试题含解析
- 【9语12月月考】安庆市宿松县部分校联考2025-2026学年九年级上学期12月月考语文试题
- 医疗数据安全保险赋能策略
- 医疗数据安全人才项目式学习方案
- 全国职业院校技能大赛赛项规程(高职)农产品质量安全检测
- DB51∕T 3179-2024 杵针技术操作规范
- 专利共同申请合同模板(2024版)
- 国开机考答案21-人文英语1(闭卷)
- AQ∕T 7009-2013 机械制造企业安全生产标准化规范
- MOOC 近代物理实验-西南大学 中国大学慕课答案
- 教科版三年级科学上册课件《运动和位置》
- 河北省部分地区2023-2024学年度高二上学期期末考试英语试题(解析版)
- GB/T 9390-2017导航术语
- GB/T 6072.1-2008往复式内燃机性能第1部分:功率、燃料消耗和机油消耗的标定及试验方法通用发动机的附加要求
- GB/T 3883.201-2017手持式、可移式电动工具和园林工具的安全第2部分:电钻和冲击电钻的专用要求
评论
0/150
提交评论