版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12赵爽弦图模型与勾股树模型赵爽弦图分为内弦图与外弦图,是中国古代数学家赵爽发现,既可以证明勾股定理,也可以以此命题,相关的题目有一定的难度,但解题方法也常常是不唯一的。弦图之美,美在简约,然不失深厚,经典而久远,被誉为“中国数学界的图腾”。弦图蕴含的割补思想,数形结合思想、图形变换思想更是课堂教学中数学思想渗透的绝佳载体。一个弦图集合了初中平面几何线与形,位置与数量,方法与思想,小身板,大能量,它就是数学教育里的不老神话。广受数学教师和数学爱好者研究,近年来也成为了各地中考的热点问题。模型1、弦图模型(1)内弦图模型:如图1,在正方形ABCD中,AE⊥BF于点E,BF⊥CG于点F,CG⊥DH于点G,DH⊥AE于点H,则有结论:△ABE≌△BCF≌△CDG≌△DAH;S正方形ABCD=4S△EAB+S正方形EFGH。图1图2图3(2)外弦图模型:如图2,在正方形ABCD中,E,F,G,H分别是正方形ABCD各边上的点,且四边形EFGH是正方形,则有结论:△AHE≌△BEF≌△CFG≌△DGH;S正方形ABCD=4S△EAB+S正方形EFGH。(3)内外组合型弦图模型:如图3,2S正方形EFGH=S正方形ABCD+S正方形PQMN.例1.(2023春·安徽·八年级统考期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为625,则小正方形的边长为(
)
A.7 B.24 C.17 D.25例2.(2023春·辽宁鞍山·八年级校考阶段练习)如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形拼接而成的.已知,正方形的面积为80.连接,交于点,交于点,连接.则图中阴影部分的面积之和为(
).
A.8 B.12 C.16 D.20例3.(2022·辽宁阜新·八年级期末)如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148 B.100 C.196 D.144例4.(2022·中山八年级期末)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.例5.(2023·广东·九年级专题练习)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》题时给出了“赵爽弦图”.将两个“赵爽弦图”(如图1)中的两个正方形和八个直角三角形按图2方式摆放围成正方形,记空隙处正方形,正方形的面积分别为,,则下列四个判断:①②;③若,则;④若点A是线段的中点,则,其中正确的序号是
模型2.勾股树模型例1.(2022·重庆市八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A、B、C的面积分别是,,,则正方形D的面积是______.例2.(2022·浙江·乐清市八年级期中)如图,在四边形ABCD中,,分别以AB,BC,CD,DA为一边向外作正方形甲、乙、丙、丁,若用S甲,S乙,S丙,S丁来表示它们的面积,那么下列结论正确的是(
)A.B.C.D.例3.(2022·江苏·八年级专题练习)如图,正方形的边长为2,其面积标记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为,…,按照此规律继续下去,则的值为___________.例4.(2023春·重庆·八年级专题练习)如图是按照一定规律“生长”的“勾股树”:经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,……,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是(
)A.12 B.32 C.64 D.128例5.(2022·广东珠海·八年级期末)如图为直角三角形,斜边,以两条直角边为直径构成两个半圆,则两个半圆的面积之和为(
)A. B. C. D.例6.(2023·江苏八年级期末)如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=_____.例7.(2023·四川达州·八年级校考阶段练习)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积、、之间的数量关系是(
).(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积、、之间的数量关系是(
),请说明理由.(3)如图4,在四边形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD、BC为边向四边形外作正方形,其面积分别为、、、,则、、、之间的数量关系式为(),请说明理由.课后专项训练1.(2023·北京初二期中)如图所示,直角三边形三边上的半圆面积从小到大依次记为、、,则、、的关系是()A.+= B. C. D.2.(2022成都市八年级数学期中)有一个面积为的正方形,经过一次“生长”后,在它的左右“肩”上“生出”两个小正方形,这个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的图形,如果继续“生长”下去,它将变得“枝繁叶茂”,则“生长”了次后形成的图形中所有正方形的面积和为()A. B. C. D.3.(2022·四川成都·模拟预测)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再将较小的两个正方形分别绕直角三角形斜边上的两顶点旋转得到图2.则图2中阴影部分面积等于(
)A.直角三角形的面积 B.最大正方形的面积C.最大正方形与直角三角形的面积和 D.较小两个正方形重叠部分的面积4.(2022·江苏·八年级课时练习)如图,△ABC中,,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道(
)A.以BC为边的正方形面积 B.以AC为边的正方形面积C.以AB为边的正方形面积 D.△ABC的面积5.(2022·广东湛江·八年级期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、B、D的面积依次为6、10、24,则正方形C的面积为()A.4 B.6 C.8 D.126.(2023春·广东潮州·九年级校考期末)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图所示的“弦图”,是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形.直角三角形的斜边长为13,一条直角边长为12,则小正方形的面积的大小为(
)
A.144 B.100 C.49 D.257.(2023春·湖北武汉·八年级统考期末)大约公元222年我国汉代数学家赵爽为《周髀算经》一书作序时介绍了“勾股圆方图”,亦称“赵爽弦图”,如图,四个全等的直角三角形拼成大正方形,中空的部分是小正方形,连接相交于点O,与相交于点P,若,则直角三角形的边与之比是(
)
A. B. C. D.8.(2023春·山东临沂·八年级统考期末)勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,,点D,E,F,G,H,I都在长方形的边上,则长方形的面积为(
)A.420 B.440 C.430 D.4109.(2023春·广西南宁·八年级统考期末)“赵爽弦图”是我国古代数学的骄傲,它巧妙利用面积关系证明了勾股定理,如图所示的“弦图”,是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较短直角边长为a,较长直角边长为b,若大正方形的面积为17,每个直角三角形面积为4,那么为.
10.(2022·江苏宿迁·八年级统考期中)如图,、、分别是以的三边为直径所画半圆的面积,其中,,则.
11.(2023·湖北孝感·统考三模)“勾股树”是以正方形一边为斜边向外作直角三角形,再以直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第五代勾股树中正方形的个数为.12.(2022秋·广东深圳·八年级校联考期中)如图1,是一个封闭的勾股水箱,其中I,II,III部分是可盛水的正方形,且相互联通,已知∠ACB=90°,AC=6,BC=8,开始时III刚好盛满水,而I,II无水.如图2摆放时,水面刚好经过III的中心O(正方形两条对角线的交点),则II中有水部分的面积为.13.(2022·广西·八年级课时练习)如图,Rt△ABC的两条直角边,.分别以Rt△ABC的三边为边作三个正方形.若四个阴影部分面积分别为,,,,则的值为______,的值为______.14.(2022·山东临沂·统考二模)中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1(如图1),则正方形的面积为;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为(用含n的式子表示,n为正整数).15.(2023山西八年级期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径,分别向外部作半圆,则,,满足的关系是______.(3)如图5,直角三角形的两直角边长分别为3,5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积为______.16.(2023·江苏扬州·七年级校联考期中)一个直角三角形的两条直角边分别为、,斜边为.我国古代数学家赵爽用四个这样的直角三角形拼成了如图的正方形,(1)探究活动:如图1,中间围成的小正方形的边长为(用含有、的代数式表示);(2)探究活动:如图1,用不同的方法表示这个大正方形的面积,并写出你发现的结论;(3)新知运用:根据你所发现的结论完成下列问题.①某个直角三角形的两条直角边、满足式子,求它的斜边的值;②由①中结论,此三角形斜边上的高为.③如图2,这个勾股树图形是由正方形和直角三角形组成的,若正方形、、、的面积分别为,4,,.则最大的正方形的边长是.17.(2022春·广西南宁·八年级南宁三中校考期末)【背景阅读】勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了验证勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.【实践操作】勾股定理的证明,人们已经找到了400多种方法,图1、图2、图3是三种常见的证明方法,请你从中任选一种证明勾股定理(图中出现的直角三角形大小形状均相同).【探索发现】如图4,以直角三角形的三边为边向外部作等边三角形,请判断、、的数量关系并说明理由.18.(2022·北京昌平·七年级期末)数学王老师在探索乘法公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,我国三国时期的数学家赵爽创造了一幅“勾股圆方图”(也称“赵爽弦图”)证明了勾股定理.2002年在北京召开的国际数学家大会把“赵爽弦图”作为会徽(如图1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大兴区旧宫四幼招聘(公共基础知识)综合能力测试题附答案
- 公务员中医诊疗考试试题及答案
- 2025四川师范大学附属生物城学校招聘6人参考题库附答案
- 2026年法律逻辑学考试真题含完整答案【有一套】
- 2026航天一院北京航天万源科技有限公司备考题库附答案
- 2025泸西县妇幼保健院公开招募高校毕业见习人员(15人)(公共基础知识)综合能力测试题附答案
- 干粉灭火器考试题及答案
- 2025 年大学园林学(园林规划)试题及答案
- 2026广西钦州市浦北县赴高校招聘教师137人考试题库附答案
- 2026年重庆经贸职业学院单招职业技能考试题库附答案
- 2026年度医院感染知识培训计划、培训内容
- 物业相关法律知识培训
- 盘扣式上人斜道施工方案
- 2025年国家开放大学《经济学基础》期末考试备考试题及答案解析
- 《地基处理技术》课件
- 老年人床上擦浴课件
- 常用药店股份合作协议书
- 2024人民防空工程常见技术问题及解答
- DB3301∕T 0340-2021 幸福河湖评价规范
- 2025秋季学期国开电大法律事务专科《民法学(2)》期末纸质考试名词解释题库珍藏版
- 2025年《思想道德与法治》期末考试题库(浓缩500题)
评论
0/150
提交评论