福建省部分市县2024届中考数学全真模拟试卷含解析_第1页
福建省部分市县2024届中考数学全真模拟试卷含解析_第2页
福建省部分市县2024届中考数学全真模拟试卷含解析_第3页
福建省部分市县2024届中考数学全真模拟试卷含解析_第4页
福建省部分市县2024届中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省部分市县2024年中考数学全真模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.92.把a•的根号外的a移到根号内得()A. B.﹣ C.﹣ D.3.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.4.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180° B.减小(n﹣2)×180°C.增加(n﹣1)×180° D.没有改变5.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A. B.C. D.6.下列实数中是无理数的是()A. B.π C. D.7.不等式组的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<38.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为()A. B. C.1 D.9.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+44010.若关于的方程的两根互为倒数,则的值为()A. B.1 C.-1 D.0二、填空题(本大题共6个小题,每小题3分,共18分)11.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.12.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.13.分解因式=________,=__________.14.化简:=_____.15.若a2+3=2b,则a3﹣2ab+3a=_____.16.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.三、解答题(共8题,共72分)17.(8分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.18.(8分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,).19.(8分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)20.(8分)已知二次函数.(1)该二次函数图象的对称轴是;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.21.(8分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?22.(10分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?23.(12分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x_____购买费用(元)__________(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】

连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【题目详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,

∴∠CFD=90°,

∴CF=CD•cos∠DCF=12×=,故选B.【题目点拨】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.2、C【解题分析】

根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)•,然后利用二次根式的性质得到,再把根号内化简即可.【题目详解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)•,=,=﹣.故选C.【题目点拨】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.3、D【解题分析】

过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.4、D【解题分析】

根据多边形的外角和等于360°,与边数无关即可解答.【题目详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【题目点拨】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.5、C【解题分析】

根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【题目详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-=>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【题目点拨】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.6、B【解题分析】

无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【题目详解】A、是分数,属于有理数;B、π是无理数;C、=3,是整数,属于有理数;D、-是分数,属于有理数;故选B.【题目点拨】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7、B【解题分析】

根据解不等式组的方法可以求得原不等式组的解集.【题目详解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式组的解集是x>1.故选B.【题目点拨】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.8、B【解题分析】

由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.【题目详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根据勾股定理得,CE==,∴AB=CE=,故选B.【题目点拨】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.9、A【解题分析】

根据题意可以列出相应的一元二次方程,从而可以解答本题.【题目详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【题目点拨】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.10、C【解题分析】

根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.【题目详解】解:设、是的两根,由题意得:,由根与系数的关系得:,∴k2=1,解得k=1或−1,∵方程有两个实数根,则,当k=1时,,∴k=1不合题意,故舍去,当k=−1时,,符合题意,∴k=−1,故答案为:−1.【题目点拨】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、14s或38s.【解题分析】试题解析:分两种情况进行讨论:如图:旋转的度数为:每两秒旋转如图:旋转的度数为:每两秒旋转故答案为14s或38s.12、5【解题分析】试题分析:利用根与系数的关系进行求解即可.解:∵x1,x2是方程x2-3x+2=0的两根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案为:5.13、【解题分析】此题考查因式分解答案点评:利用提公因式、平方差公式、完全平方公式分解因式14、【解题分析】

直接利用二次根式的性质化简求出答案.【题目详解】,故答案为.【题目点拨】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.15、1【解题分析】

利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【题目详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【题目点拨】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.16、80°.【解题分析】

如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【题目详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【题目点拨】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.三、解答题(共8题,共72分)17、(1);(2)①2,②【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可.①证明:在图3中,取AB中点E,证明≌,即可得到,②由①知,在旋转过程60°中始终有≌四边形的面积等于=.详解:(1)∵四边形为菱形,∴∴为等边三角形∴∵AD//∴∴为等边三角形,边长∴重合部分的面积:①证明:在图3中,取AB中点E,由上题知,∴又∵∴≌,∴∴,②由①知,在旋转过程60°中始终有≌∴四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.18、11.9米【解题分析】

先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【题目详解】∵BD=CE=6m,∠AEC=60°,∴AC=CE•tan60°=6×=6≈6×1.732≈10.4m,∴AB=AC+DE=10.4+1.5=11.9m.答:旗杆AB的高度是11.9米.19、【解题分析】

试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=,在Rt△ADC中,AD=500,CD=500,则BC=.答:观察点B到花坛C的距离为米.考点:解直角三角形20、(1)x=1;(2),;(3)【解题分析】

(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.【题目详解】(1)该二次函数图象的对称轴是直线;(2)∵该二次函数的图象开口向上,对称轴为直线,,∴当时,的值最大,即.把代入,解得.∴该二次函数的表达式为.当时,,∴.(3)易知a0,∵当时,均有,∴,解得∴的取值范围.【题目点拨】本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.21、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解题分析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,∴==6,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.22、(2)证明见试题解析;(2).【解题分析】

(2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.【题目详解】解:(2)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四边形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.23、(1)30x,y,50y;(2)商场购进A型台灯2盏,B型台灯7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论