版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题26.6反比例函数章末七大题型总结(拔尖篇)【人教版】TOC\o"1-3"\h\u【题型1反比例函数中的动点问题】 1【题型2反比例函数与x=a或y=a】 3【题型3反比例函数中的存在性问题】 5【题型4反比例函数与勾股定理、全等三角形的综合】 6【题型5反比例函数与图形变换】 8【题型6反比例函数与定值、最值】 10【题型7反比例函数的应用】 12【题型1反比例函数中的动点问题】【例1】(2023春·四川成都·九年级四川省成都市石室联合中学校考期中)如图,已知直线y=x+2与双曲线y=kx交于A、B两点,且A点坐标为(a,(1)求双曲线解析式;(2)将直线y=x+2向下平移两个单位得直线l,P是y轴上的一个动点,Q是l上的一个动点,求AP+PQ的最小值,并求此时的Q点坐标;(3)若点M为y轴上的一个动点,N为平面内一个动点,当以A、B、M、N为顶点的四边形是矩形时,请求出N点坐标.【变式1-1】(2023春·辽宁沈阳·九年级沈阳市第七中学校考期中)如图,在平面直角坐标系xOy中,一次函数y1=kx+b的图象与反比例函数y2=mx图象交于点A-1,3(1)求一次函数y1=kx+b和反比例函数(2)观察图象,请直接写出使y1>y(3)M是y轴上的一个动点,作MN⊥y轴,交反比例函数图象于点N,当由点O,C,M,N构成的四边形面积为72时,直接写出点N【变式1-2】(2023春·河南周口·九年级校考期末)如图,在平面直角坐标系中,菱形ABOD的顶点O与坐标原点重合,点B在y轴的正半轴上,点A在反比例函数y=kx(x>0)的图象上,点D的坐标为(8,6).(1)求反比例函数的表达式;(2)E是x轴正半轴上的动点,过点E作x轴的垂线交线段OA于点M,交双曲线于点P,在E点运动过程中,M点正好是线段EP中点时,求点E的坐标.【变式1-3】(2023春·四川乐山·九年级统考期末)如图,A1,3,B3,1是反比例函数y=3x的图象上的两点,点P是反比例函数y=3x的图象位于线段AB下方的一动点,过点P作PM⊥x轴于M,交线段AB于Q.设点M
【题型2反比例函数与x=a或y=a】【例2】(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)在平面直角坐标系xOy中,直线l过点A1,0且与y轴平行,直线l2过点B0,2且与x轴平行,直线l1,与直线l2相交于点P,点E为直线l2上一点,反比例函数y=k(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF,若△OEF的面积为△PEF的面积的3倍,求点E的坐标;(3)当k<2时,G是y轴上一点,直接写出所有使得△EFG是等腰直角三角形的点G的坐标,并把求其中一个点G的坐标的过程写出来.【变式2-1】(2023春·浙江宁波·九年级宁波市第十五中学校考期中)如图,直线AC与反比例函数y=kxk>0的图象相交于A、C两点,与x轴交于点D,过点D作DE⊥x轴交反比例函y=kxk>0的图象于点E,连结CE,点B为y轴上一点,满足【变式2-2】(2023春·浙江舟山·九年级统考期末)已知:一次函数y=ax+b与反比例函数y=kx的图像在第一象限内交于点Am,2,B3,n两点,且m,n满足2m-3n2+n-1=0,直线l经过点A且与y轴平行,点C是直线l上一点,过点
(1)求一次函数与反比例函数的函数表达式.(2)如图1,当点C在点A上方时,连接OC,OA,且OC平分∠AOD,求CDDE(3)如图2,当点C在点A下方时,点H是DC的中点,点G在x轴上,若四边形ABGH是平行四边形.求出点G的坐标.【变式2-3】(2023春·浙江·九年级专题练习)如图1,一次函数y=kx-2k≠0的图像与y轴交于点A,与反比例函数y=-3xx<0的图像交于点(1)b=___________,k=___________.(2)若点P在第三象限内,是否存在点P使得△OBP是以OB为直角边的等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)如图2,C是线段AB上一点(不与点A,B重合),过点C且平行于y轴的直线l交该反比例函数的图像于点D,连接OC,OD,BD.若四边形OCBD的面积为3,求点C的坐标.【题型3反比例函数中的存在性问题】【例3】(2023春·江苏盐城·九年级景山中学校考期末)我们定义:如果一个矩形A周长和面积都是B矩形的N倍,那么我们就称矩形A是矩形B的完全N倍体.
(1)若矩形A为正方形,是否存在一个正方形B是正方形A的完全2倍体?______(填“存在”或“不存在”).【深入探究】长为3,宽为2的矩形C是否存在完全2倍体?小鸣和小棋分别有以下思路:【小鸣方程流】设新矩形长和宽为x、y,则依题意x+y=10,xy=12,联立x+y=10xy=12得x【小棋函数流】如图,也可用反比例函数l2:y=12x与一次函数l1:(2)那么长为4.宽为3的矩形C是否存在完全12(3)如果长为4,宽为3的矩形C存在完全k倍体,请求出k的取值范围.【变式3-1】(2023春·山西长治·九年级统考期末)(综合与探究)如图,在平面直角坐标系中,已知反比例函数y=kxx<0的图象过点C-4,2,点D的纵坐标为4,直线CD与x轴,
(1)求直线CD的函数表达式;(2)若点P是Rt△AOB直角边上的一个动点,当S△PCD=(3)已知点D关于y轴的对称点为M,点C关于x轴的对称点为N,Q为y轴上的动点.问直线CD上是否存在点G,使得以点M,N,Q,G为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点G的坐标;若不存在,请说明理由.【变式3-2】(2023春·四川资阳·九年级统考期末)如图,正比例函数y=kx的图象与反比例函数y=mx的图象交于点A(a,2a)(a>0)和点B,且OA=5,点C是x轴正半轴上一点,过点C作x轴的垂线,与正比例函数图象交于点P,与反比例函数图象交于点(1)求正比例函数与反比例函数的表达式;(2)当点Q是PC的中点时,求C点的坐标;(3)是否存在点C,使△ABC是直角三角形,若存在,求出此时点C的坐标,若不存在,说明理由.【变式3-3】(2023春·辽宁沈阳·九年级统考期末)已知正比例函数y=3x的图象与反比例函数y=kxk≠0(1)求反比例函数y=kx的解析式,并确定这两个函数图象的另一个交点(2)画出草图,并据此直接写出使反比例函数值小于正比例函数值的x的取值范围;(3)在y=2的直线上是否存在一点P,使PB-PA的值最大,若存在,求出点P的坐标;若不存在,请说明理由.【题型4反比例函数与勾股定理、全等三角形的综合】【例4】(2023春·浙江宁波·九年级校考期中)如图,正方形ABCD的顶点C、D在反比例函数y=4x(x>0)的图像上,顶点A、B分别在x轴和y轴的正半轴上,再在其右侧作一个正方形DFEG,顶点G在反比例函数y=4x(x>0)的图像上,顶点E在x轴的正半轴上,则点D的坐标为
【变式4-1】(2023春·河南周口·九年级统考期末)正方形ABCD的顶点A,B分别在x轴和y轴上,点C在反比例函数y=2xx>0的图象上,点D在第二象限内,若AO=3BO,则正方形ABCD
A.10 B.3 C.7 D.5【变式4-2】(2023春·浙江衢州·九年级统考期末)【思路点拨】:如图1,点A'是点A关于直线y=x的对称点,分别过点A,A'作y轴,x轴的垂线,垂足为M,N,连结OA,OA',AA'.可以利用轴对称图形的性质证明【应用拓展】:如图2,若点A横坐标为12,且在函数y=
(1)求点A关于直线y=x的对称点A'(2)若点B的坐标为-1,1,点P是直线y=x.上的任意一点,连结AP,BP,求AP+BP的最小值.【变式4-3】(2023春·浙江宁波·九年级统考期末)定义:把能被一条对角线分成两个全等直角三角形的四边形叫做勾股四边形.(1)矩形______勾股四边形(填“是”或“不是”).(2)如图在直角坐标系xOy中,直线y=-x+1与双曲线y=-6x相交于A,B两点,点P-3,0在x
①分别求出A、B两点的坐标.②当四边形APQB是平行四边形时,如图,请证明▱APQB是勾股四边形.(3)在(2)的条件下,当以A、B、P、Q为顶点的四边形是勾股四边形时,请直接写出Q点的坐标.【题型5反比例函数与图形变换】【例5】(2023春·江苏淮安·九年级统考期中)如图,将反比例函数y=5x(x>0)的图象绕坐标原点0,0顺时针旋转45°,旋转后的图象与x轴相交于A点,若直线y=12
【变式5-1】(2023春·江苏泰州·九年级统考阶段练习)在平面直角坐标系中,过一点分别作坐标轴的垂线,若两垂线与坐标轴围成矩形的周长C数值和面积S数值相等,则称这个点为“等值点”.例如:点A(3,6),因为C=(3+6)×2=18,S=3×6=18,所以A是“等值点”.(1)若点E为双曲线y=4x(x>0)上任意一点,将点E向右平移2个单位,再向上平移2个单位得到点F,求证:点F为“等值点(2)在第一象限内,若一次函数y=-x+b的图象上有两个“等值点”,求b的取值范围.【变式5-2】(2023春·九年级课时练习)如图,在平面直角坐标系xOy中,Rt△ABC的直角边AB在x轴上,∠ABC=90∘.点A的坐标为1,0,点C的坐标为3,4,M是BC(1)求k的值;(2)将△ABC绕某个点旋转180∘后得到△DEF(点A,B,C的对应点分别为点D,E,F),且EF在y轴上,点D在函数y=kx【变式5-3】(2023春·江苏淮安·九年级统考期末)如图1,正方形ABCD的顶点A1,1,点C3,3,反比例函数y=k
(1)试说明反比例函数y=kx的图象也经过点(2)如图2,正方形ABCD向下平移得到正方形MNPQ,边MN在x轴上,反比例函数y=kx的图象分别交正方形MNPQ的边PQ、PN于点E、①求△MEF的面积;②在x轴上是否存在一点G,使得△GEF是等腰三角形,若存在,直接写出点G的坐标,若不存在,请说明理由.【题型6反比例函数与定值、最值】【例6】(2023·山东济宁·校考二模)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点Am,8,与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点
(1)反比例函数的表达式;(2)观察图像,直接写出当x>0时,不等式2x+6-k(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【变式6-1】(2023·河北石家庄·统考一模)如图,已知点A1,4,B7,1,点P在线段AB上,并且点P的横、纵坐标均为整数,经过点P(1)当点P与点B重合时,求L的表达式;(2)求线段AB所在直线的函数表达式;(3)直接写出k的最小值和最大值.【变式6-2】(2023春·江苏无锡·九年级统考期末)如图,动点M在函数y1=4x(x>0)的图像上,过点M分别作x轴和y平行线,交函数y2=1x(x>0)的图像于点B、C,作直线BC,设直线(1)若点M的坐标为(1,4).①直线BC的函数表达式为______;②当y<y2时,x的取值范围是③点D在x轴上,点E在y轴上,且以点B、C、D、E为顶点的四边形是平行四边形,请直接写出点D、E的坐标;(2)连接BO、CO.求证:△BOC的面积是个定值.【变式6-3】(2023春·江苏·九年级专题练习)我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休”.数形结合是解决数学问题的重要思想方法.阅读下列材料,回答问题:对任意的实数a、b而言,a2﹣2ab+b2=(a﹣b)2≥0,即a2+b2≥2ab.易知当a=b时,(a﹣b)2=0,即:a2﹣2ab+b2=0,所以a2+b2=2ab.若a≠b,则(a﹣b)2>0,所以a2+b2>2ab.[类比论证]对于任意正实数a、b,∵(a-b)2≥0,∴a+b2ab(填“<”、“>”[几何验证]如图(1),在△ABC中,∠ACB=90°,CD⊥AB于点D,CE为△ABC的中线,若AD=a,BD=b,试根据图形证明:a+b≥2ab.[结论应用]若a>0,则当a=时,代数式a+4a有最小值为[问题解决](1)某汽车零件生产公司为提高工作效率,购进了一批自动化生产设备,已知每台设备每天的运营成本包含以下三个部分:一是固定费用,共3600元;二是材料损耗费,每个零件损耗约为5元(元),三是设备折旧费(元),它与生产的零件个数x的函数关系式为0.0001x2,设该设备每天生产汽车零件x个.当x为多少时,该设备每生产一个零件的运营成本最低?最低是多少元?(2)如图(2),在平面直角坐标系中,直线y=﹣43-4与坐标轴分别交于点A、B,点M为反比例函数y=12x(x>0)上的任意一点,过点M作MC⊥x轴于点C,MD⊥y轴于点D.则四边形ABCD【题型7反比例函数的应用】【例7】(2023春·江苏苏州·九年级统考期末)学校举行数学文化竞赛.图中的四个点分别描述了八(1)、八(2)、八(3)、八(4)四个班级竞赛成绩的优秀率y(班级优秀人数占班级参加竞赛人数的百分率)与该班参加竞赛人数x的情况,其中描述八(2)、八(4)两个班级情况的点恰好在同一个反比例函数的图像上,则成绩优秀人数最多的是(
)
A.八(1)班 B.八(2)班 C.八(3)班 D.八(4)班【变式7-2】(2023春·河北邢台·九年级统考期末)某经销商出售一种进价为4元/升的液体原料,在市场营销中发现此商品日销售价x元/升与日销售量y(升)满足反比例函数,部分数据如下表:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浩云科技产品销售合同
- 常用劳动合同范本
- 店宣费合同协议
- 密室加盟合同范本
- 小孩写合同协议书
- 就地安置合同范本
- 广东售电合同协议
- 工程车队合同范本
- 对赌协议终止合同
- 工会福利合同范本
- 墙壁维护施工方案(3篇)
- 骨外科护理年度工作总结范文
- 东北大学《大学物理》2024 - 2025 学年第一学期期末试卷
- 人工智能安全风险测评白皮书(2025年)
- 2025下半年贵州遵义市第一人民医院招聘事业单位65人笔试备考重点试题及答案解析
- 中翼航空投资有限公司(北京航食)2026届高校毕业生校园招聘(公共基础知识)测试题带答案解析
- 围麻醉期应激反应的调控策略
- 2025年外贸实习合同协议
- 集成电路封装测试厂建设项目可行性研究报告
- 医院服务礼仪培训
- 亚朵酒店管理分析
评论
0/150
提交评论